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Traditional Exploratory factor analysis (EFA) is often not purely exploratory in nature. 

The data analyst brings to the enterprise a substantial amount of intellectual baggage 

that affects the selection of variables, choice of a number of factors, the naming of 

factors, and in some cases the way factors are rotated to simple structure. So to some 

extent, EFA is actually confirmatory in nature. 

 

Confirmatory factor analysis (CFA) provides a more explicit framework for confirming 

prior notions about the structure of a domain of content. CFA adds the ability to test 

constraints on the parameters of the factor model to the methodology of EFA. 

 

In practice, people frequently combine EFA and CFA, to the extent that the 

appropriate statistical model is not actually determinable. However, we’ll begin with an 

example of purely confirmatory factor analysis. 

 

1 . “Pure”  Confirmatory Factor Analysis  
 

Consider the Athletics Data example we examined in conjunction with EFA. Suppose 

that, prior to analyzing the data, we hypothesized that there were 3 uncorrelated factors 

called Endurance, Strength, and Hand-Eye Coordination, and that each factor has non-

zero loadings on only 3 variables. Such a hypothesis is, of course, extremely unlikely to 

be true, a point we will return to later. Taken literally, with a suitable ordering of the 9 

observed variables, this hypothesis implies that the common factor pattern is of the 

form 
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F  

There are a number of equivalent ways of writing this CFA model. One states that  

 = +y Fx e  

where F has the form shown above, and x and e are vectors of random variables such 

that ( )E ¢ =xe 0 , 2( )E ¢ =ee U , and ( )E ¢ =xx I . 2U  is a diagonal matrix of positive 

values, and hence may be written in the form (zero entries not shown): 
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1.1 Diagramming a Confirmatory Factor Model 
 

This model may be written as a path diagram, as shown on the next page. Note that 

the variances of the common factors are not shown explicitly in the diagram. According 

to our conventions, they are therefore assumed to have a variance of 1. 

 



Note also that the coefficient from a residual to an observed variable is not labeled in 

the diagram, while the coefficient from a common factor to an observed variable is 

labeled. For example, the coefficient from 
1

x (“Endurance”) to 
1

y (“1500 Meter Run”) is 

1
q . This means that this coefficient is a free parameter that is estimated by the CFA 

software.  On the other hand, the coefficient from 
1
e  to 

1
y (“1500 Meter Run”) is not 

labeled, and is therefore assumed to be a fixed value of 1.  
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So the top part of the diagram, shown below, stands for the equation 

1 1 1 1
y xq e= + , 

where 
1

x  has a variance of 1 and 
1
e  has a variance of 

10
q . 
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Recall that, in any path diagram, variables are either manifest or latent, and either 

exogenous or endogenous. Here are some questions for you. See if you can answer them, 

then check your answers in the footnote1 below.  What kind of variable is “Endurance” 

in the preceding diagram? What kind of variable is “1500 Meter Run”? What kind of 

variable is “
1
e ”? 

 

A number of programs are available to fit confirmatory factor analysis models to data. 

Some of these programs are free. One such program is available as the R package sem. 

Another is the program Mx.  

 

Our diagramming system transparently connects with the standard linear equations 

coding of a structural equation model. Each and every linear equation has a 

corresponding element in the diagram. Moreover, each path in the diagram can be coded 

unambiguously in an ASCII computer language called PATH1 (Steiger, 1988).  

 

1.2 The sem program and the RAM Diagramming System 

 

The sem package has the capability of decoding a language and diagramming system 

that follows our general rules for path diagrams (except that it requires latent variable 

variances of 1 to be represented explicitly). However, it is better designed 

computationally to handle a slightly abbreviated diagramming system that makes a 

couple of exceptions to these rules. This latter diagramming system, which I will call 

RAM, does not maintain a direct visual correspondence with the underlying linear 

equation system. When we discuss the major algebraic approaches to path models (the 

LISREL, RAM1, RAM2, Bentler-Weeks, and EzPath models), we will discuss the 

                                     
1 “Endurance” is latent-exogenous, “1500 Meter Run” is manifest-endogenous, and “e1” is latent-

exogenous. 



distinction between the original (RAM1) specification of J. J. McArdle, and the 

improved RAM2 model specification that sem is designed around.  

 

The RAM diagramming system is similar to the system we have described above, with 

one major exception — residual latent variables are not represented explicitly. A 

residual latent variable is an exogenous latent variable that has a single directed path 

(single headed arrow) to a target endogenous variable. For example, 
1
e  is a residual 

latent variable. In the RAM diagramming system, residual latent variables have their 

variances and covariances represented as variances and covariances attached to their 

targets. Below we show the previous path diagram in the RAM system (with unit 

variances for the factors shown explicitly. 
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The two-headed arrows, or “slings,” mean something different on the left side of the 

diagram than they do on the right side of the diagram. On the left side, they stand for 

the variances of the latent variables, while on right side, they are the variances of the 

(hidden) residual variables. This system is visually more compact in its use of space 

than the system described earlier, because some objects are not represented explicitly. 

On the other hand, this system requires more effort to decode, because (a) there are 

more arrowheads, and (b) the meaning of a two-headed arrow varies, depending on the 

status of the target variable it is attached to, which in turn has to be determined by 

examining whether the target variable is endogenous or exogenous.  This double usage 

of the two-headed arrow also rules out other possible usages in a more complex system. 

For example, some systems allow unit variance constraints to be placed on the variances 

of endogenous latent variables, and these constraints are indicated in the path diagram 

with a two-headed arrow attached to the endogenous latent variable. (The residual 

variance is indicated with an explicit residual variable.) This system cannot be 

employed in conjunction with the RAM system. 

 

The sem package can decode a model represented in the RAM path diagramming 

system rather easily. For each sling or arrow, the user includes a line in a rather natural 

ASCII language. Each line is of the form 

 
<Relation>, <Parameter Symbol>, <Parameter Value> 

 

<Relation> indicates the arrow or sling. Arrows are represented in the form 

 
name1 -> name2 

 

Slings (two-headed arrows) are represented as 

 
name1 <-> name2 
 

The <Parameter Symbol> is a label used to uniquely identify a free parameter. If the 

parameter symbol is NA, the path has a fixed value. If two paths have the same free 



parameter label, the numerical value for that parameter is constrained to be the same 

for both paths. 

 

The <Parameter Value> is the starting value for iteration if the parameter is free (a 

value of NA will cause the program to use an automatic starting value), the fixed 

numerical value if the parameter symbol is NA and the value is fixed. 

 

To see how this system works, compare the code on the following page with the path 

diagram. Note that you must use the variable names in the data file. I’ve included some 

comment lines to set off key areas of the code. 

 
## Factor 1 -- Endurance 
Endurance -> X.1500M,  theta01, NA 
Endurance -> X.2KROW,  theta02, NA 
Endurance -> X.12MINTR,theta03, NA 
## Factor 2 -- Strength 
Strength  -> BENCH,    theta04, NA 
Strength  -> CURL,     theta05, NA 
Strength  -> MAXPUSHU, theta06, NA 
## Factor 3 -- Hand-Eye Coordination 
Hand-Eye  -> PINBALL,  theta07, NA 
Hand-Eye  -> BILLIARD, theta08, NA 
Hand-Eye  -> GOLF,     theta09, NA 
## Unique Variances 
X.1500M   <->  X.1500M,  theta10, NA 
X.2KROW   <->  X.2KROW,  theta11, NA 
X.12MINTR <->  X.12MINTR, theta12, NA 
BENCH     <->  BENCH, theta13, NA 
CURL      <->  CURL, theta14, NA 
MAXPUSHU  <->  MAXPUSHU, theta15, NA 
PINBALL   <->  PINBALL, theta16, NA 
BILLIARD  <->  BILLIARD, theta17, NA 
GOLF      <->  GOLF, theta18, NA 
## Factor Variances fixed at 1 
Endurance <->  Endurance, NA, 1 
Strength  <->  Strength,  NA, 1 
Hand-Eye  <->  Hand-Eye,  NA, 1 

 

Suppose we save the above code into an ASCII file called CFA1.txt (say, with 

NotePad). After loading the Hmisc library, loading the AthleticsData file and attaching 

it with the following 3 lines, we are ready to go. 

 
> library(Hmisc) 
> AthleticsData <- spss.get("AthleticsData.sav") 
> attach(AthleticsData) 



 

We begin by computing a correlation matrix for analysis. 

 
> AthleticsData.R <- cor(AthleticsData) 
 
 

After loading the sem package, we then translate the confirmatory factor model 
 
> library(sem) 
> cfa1.model <- specify.model("CFA1.txt") 
 

We are now ready to fit the model and save our results to a model fit object. 

A single command does the trick. 
 
> cfa1.fit <- sem(cfa1.model, AthleticsData.R, 1000) 
 

Requesting a summary of the fit produces the following: 

 
> summary(cfa1.fit) 
Model Chisquare =  526.26   Df =  27 Pr(>Chisq) = 0 
Chisquare (null model) =  2330.1   Df =  36 
Goodness-of-fit index =  0.90479 
Adjusted goodness-of-fit index =  0.84131 
RMSEA index =  0.13605   90% CI: (0.12603, 0.14632) 
Bentler-Bonnett NFI =  0.77415 
Tucker-Lewis NNFI =  0.70983 
Bentler CFI =  0.78237 
SRMR =  0.12188 
BIC =  339.75  
 
Normalized Residuals 
    Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
-7.530000 -0.000042  0.823000  1.710000  2.880000 14.000000  
 
Parameter Estimates 
        Estimate Std Error z value Pr(>|z|)                            
theta01 0.71071  0.037397  19.0046 0.0000e+00 X.1500M <--- Endurance   
theta02 0.53435  0.035011  15.2623 0.0000e+00 X.2KROW <--- Endurance   
theta03 0.75095  0.038010  19.7568 0.0000e+00 X.12MINTR <--- Endurance 
theta04 0.78082  0.039534  19.7508 0.0000e+00 BENCH <--- Strength      
theta05 0.72157  0.038483  18.7502 0.0000e+00 CURL <--- Strength       
theta06 0.48429  0.034890  13.8805 0.0000e+00 MAXPUSHU <--- Strength   
theta07 0.59504  0.033551  17.7353 0.0000e+00 PINBALL <--- HandEye     
theta08 0.75930  0.034697  21.8836 0.0000e+00 BILLIARD <--- HandEye    
theta09 0.74385  0.034580  21.5114 0.0000e+00 GOLF <--- HandEye        
theta10 0.49489  0.042484  11.6491 0.0000e+00 X.1500M <--> X.1500M     
theta11 0.71447  0.037980  18.8119 0.0000e+00 X.2KROW <--> X.2KROW     
theta12 0.43608  0.044934   9.7048 0.0000e+00 X.12MINTR <--> X.12MINTR 
theta13 0.39032  0.049199   7.9335 2.2204e-15 BENCH <--> BENCH         
theta14 0.47934  0.044755  10.7103 0.0000e+00 CURL <--> CURL           
theta15 0.76546  0.038557  19.8527 0.0000e+00 MAXPUSHU <--> MAXPUSHU   
theta16 0.64593  0.035543  18.1734 0.0000e+00 PINBALL <--> PINBALL     
theta17 0.42346  0.038638  10.9599 0.0000e+00 BILLIARD <--> BILLIARD   
theta18 0.44668  0.037998  11.7554 0.0000e+00 GOLF <--> GOLF           
 
Iterations =  19 
 



The above output shows that the solution converged in 19 iterations, yielding a model 
2c  statistic of 526.26 with 27 degrees of freedom. Where did this “degrees of freedom” 

value come from? In general, it is the number of non-redundant elements of the 

covariance p p´  matrix minus the number of free parameters. In this case, the 

covariance matrix is 9 9´ , so there are ( 1)/ 2 9(9 1)/ 2 45p p + = + =  non-redundant 

elements. Since there are 18 free parameters (
1
q  through 

18
q ), there are 45 18 27- =  

degrees of freedom. 

 

This 2c  value, of course, has a p-value far below .001, and so the null hypothesis of 

perfect fit is rejected. The output also includes parameter values, estimates of their 

standard errors, and asymptotically normal statistics testing the hypothesis that the 

parameter value is zero in the population. One can also construct an approximate 95% 

confidence interval by taking the estimate plus or minus two standard errors.  

 

1.3 Evaluating and Improving Model Fit 
 

The fact that the hypothesis of perfect fit is rejected is, in itself, not very informative — 

the common factor model is highly constrained, and with a sample size of 1000, we have 

excellent power to detect even minor levels of misfit. The more important statistical 

questions are, (a) how bad is the misfit, and (b) how precisely have we have we 

determined the degree of misfit. For a detailed account of several of these indices and 

their theoretical basis, see the course handout on “Indices of Fit in Structural Equation 

Modeling.” 

 

The fact that the RMSEA confidence interval ranges from .126 to .146 suggests to many 

people that the model fit, in this case, can definitely be improved. Of course, we know 

from the earlier exploratory factor analysis of these same data that there are two 

moderately high “crossover loadings” that are not included in the model we just 

evaluated, so this model is definitely missing some key elements. However, suppose we 

did not know that? How would we proceed?  

 



The “pure” confirmatory approach would suggest that we not proceed at all!  We had a 

model, it doesn’t fit, and “well — that’s it.” Of course, in general people do proceed, 

sometimes at the peril of objective scientific values.  Below, we sketch two popular 

approaches to arriving at a confirmatory factor model through a mixture of exploratory 

and confirmatory approaches. 

 

2. The “Confirm and Update” Approach 
 

One approach, introduced by Jöreskog, is to start with a confirmatory model based on 

theory, then update it by adding factor loadings with the aid of “modification indices.” 

These indices attempt to estimate which missing paths, if added to the current model, 

would result in the greatest reduction of the 2c  fit statistic. 

 

Obtaining modification indices from sem is straightforward.  
> mod.indices(cfa1.fit) 
5 largest modification indices, A matrix: 
MAXPUSHU:Endurance   X.2KROW:Strength   MAXPUSHU:X.1500M   MAXPUSHU:X.2KROW  
          186.7412           170.2313           147.1726           132.1697  
Endurance:MAXPUSHU  
          128.8828  
 
  5 largest modification indices, P matrix: 
Endurance:MAXPUSHU   Strength:X.2KROW      BENCH:X.1500M   Strength:X.1500M  
         186.74117          170.23130           63.26395           59.28328  
   Endurance:BENCH  
          44.76791 

 

Interpreting the above is facilitated by a knowledge of the RAM1 model of McArdle and 

McDonald. However, essentially it works like this. An entry in the A matrix is of the 

form, <endogenous variable>:<exogenous variable>.  So, the largest 

modification index, labeled MAXPUSHU:Endurance, indicates that the model 2c  fit 

index would be decreased by roughly 187 if a path from Endurance to MAXPUSHU were 

added to the model. Let’s try it, by simply adding a single line to the previous model. 

This line is “Endurance -> MAXPUSHU, theta19, NA”. 

We fit the model, 
 
> cfa2.model <- specify.model("CFA2.txt") 
> cfa2.fit <- sem(cfa2.model, AthleticsData.R, 1000) 

 



then examine the results. 

 
> summary(cfa2.fit) 
 Model Chisquare =  310.32   Df =  26 Pr(>Chisq) = 0 
 Chisquare (null model) =  2330.1   Df =  36 
 Goodness-of-fit index =  0.93856 
 Adjusted goodness-of-fit index =  0.89367 
 RMSEA index =  0.10463   90% CI: (0.094363, 0.11522) 
 Bentler-Bonnett NFI =  0.86682 
 Tucker-Lewis NNFI =  0.8284 
 Bentler CFI =  0.87607 
 SRMR =  0.093325 
 BIC =  130.72  
 
 Normalized Residuals 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 -7.530  -0.323   0.444   0.910   2.410   7.520  
 
 Parameter Estimates 
        Estimate Std Error z value Pr(>|z|)                            
theta01 0.73778  0.033684  21.9032 0.0000e+00 X.1500M <--- Endurance   
theta02 0.56030  0.034651  16.1699 0.0000e+00 X.2KROW <--- Endurance   
theta03 0.70195  0.033341  21.0540 0.0000e+00 X.12MINTR <--- Endurance 
theta04 0.81307  0.036707  22.1502 0.0000e+00 BENCH <--- Strength      
theta05 0.69295  0.035394  19.5781 0.0000e+00 CURL <--- Strength       
theta06 0.52020  0.032383  16.0638 0.0000e+00 MAXPUSHU <--- Strength   
theta07 0.59503  0.033551  17.7352 0.0000e+00 PINBALL <--- HandEye     
theta08 0.75931  0.034697  21.8837 0.0000e+00 BILLIARD <--- HandEye    
theta09 0.74385  0.034580  21.5112 0.0000e+00 GOLF <--- HandEye        
theta10 0.45568  0.036057  12.6376 0.0000e+00 X.1500M <--> X.1500M     
theta11 0.68607  0.037295  18.3959 0.0000e+00 X.2KROW <--> X.2KROW     
theta12 0.50726  0.034922  14.5257 0.0000e+00 X.12MINTR <--> X.12MINTR 
theta13 0.33892  0.044964   7.5376 4.7962e-14 BENCH <--> BENCH         
theta14 0.51982  0.038556  13.4824 0.0000e+00 CURL <--> CURL           
theta15 0.53297  0.033166  16.0700 0.0000e+00 MAXPUSHU <--> MAXPUSHU   
theta16 0.64594  0.035543  18.1734 0.0000e+00 PINBALL <--> PINBALL     
theta17 0.42345  0.038638  10.9594 0.0000e+00 BILLIARD <--> BILLIARD   
theta18 0.44669  0.037998  11.7556 0.0000e+00 GOLF <--> GOLF           
theta19 0.47879  0.031654  15.1260 0.0000e+00 MAXPUSHU <--- Endurance  
 
 Iterations =  19 

 

We see that the new parameter, 
19
q , has an estimate value of .48, and is highly 

significant. Moreover, the model 2c  statistic decreased to 310, a 215 point decrease even 

greater than the modification index predicted. According to statistical theory in Steiger, 

Shapiro, and Browne (1984), since the models are nested (The first model is a special 

case of the second, where one of the parameters is constrained to zero), you can treat 

the difference in the two 2c  values as a 2c  with degrees of freedom equal to the 

difference in their degrees of freedom (i. e., 1 in this case). The resulting chi square 

difference statistic provides a method for testing whether there is a statistically different 

improvement in fit. Clearly there is!  



 

However, the RMSEA statistic for the improved model is still larger (.10) than the 

recommended value. We recompute the modification indices: 

 
> mod.indices(cfa2.fit) 

 
 5 largest modification indices, A matrix: 
X.2KROW:Strength    X.2KROW:BENCH     X.2KROW:CURL    X.1500M:BENCH  
       164.62477        137.49080        103.45883         89.50040  
X.1500M:Strength  
        84.81637  
 

The largest modification index is for a path from Strength to X.2KROW.  Adding this 

path to the model with the line “Strength -> X.2KROW, theta20, NA” we refit 

the model again, 

 
> cfa3.model <- specify.model("CFA3.txt") 
> cfa3.fit <- sem(cfa3.model, AthleticsData.R, 1000) 
> summary(cfa3.fit) 
Model Chisquare =  125.32   Df =  25 Pr(>Chisq) = 2.5535e-15 
 Chisquare (null model) =  2330.1   Df =  36 
 Goodness-of-fit index =  0.97393 
 Adjusted goodness-of-fit index =  0.95307 
 RMSEA index =  0.06338   90% CI: (0.052591, 0.074631) 
 Bentler-Bonnett NFI =  0.94622 
 Tucker-Lewis NNFI =  0.93703 
 Bentler CFI =  0.95627 
 SRMR =  0.080264 
 BIC =  -47.369  
 
 Normalized Residuals 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
-7.530000 -1.520000  0.000013  0.108000  1.350000  5.890000  
 
 Parameter Estimates 
        Estimate Std Error z value Pr(>|z|)                          
theta01 0.77177  0.033156  23.2768 0        X.1500M <--- Endurance   
theta02 0.60940  0.032238  18.9033 0        X.2KROW <--- Endurance   
theta03 0.69222  0.032997  20.9786 0        X.12MINTR <--- Endurance 
theta04 0.81218  0.033343  24.3581 0        BENCH <--- Strength      
theta05 0.69416  0.033125  20.9555 0        CURL <--- Strength       
theta06 0.56438  0.032014  17.6293 0        MAXPUSHU <--- Strength   
theta07 0.59503  0.033551  17.7352 0        PINBALL <--- HandEye     
theta08 0.75930  0.034697  21.8836 0        BILLIARD <--- HandEye    
theta09 0.74385  0.034580  21.5113 0        GOLF <--- HandEye        
theta10 0.40437  0.035668  11.3370 0        X.1500M <--> X.1500M     
theta11 0.52207  0.031609  16.5165 0        X.2KROW <--> X.2KROW     
theta12 0.52083  0.034224  15.2180 0        X.12MINTR <--> X.12MINTR 
theta13 0.34037  0.037359   9.1107 0        BENCH <--> BENCH         
theta14 0.51815  0.034470  15.0318 0        CURL <--> CURL           
theta15 0.54321  0.031522  17.2329 0        MAXPUSHU <--> MAXPUSHU   
theta16 0.64593  0.035543  18.1734 0        PINBALL <--> PINBALL     
theta17 0.42346  0.038638  10.9597 0        BILLIARD <--> BILLIARD   
theta18 0.44668  0.037998  11.7554 0        GOLF <--> GOLF           
theta19 0.45936  0.031381  14.6382 0        MAXPUSHU <--- Endurance  
theta20 0.42293  0.030938  13.6703 0        X.2KROW <--- Strength    
 
 Iterations =  16 
 



The new parameter, 
20
q , has an impressive value of .42, and is highly significant. The 

model 2c  dropped to 125 (the chi square difference test is overwhelmingly significant)+, 

and the RMSEA, at .063, is now definitely in the range considered acceptable by many 

experts.  

 

Of course, we can continue to examine modification indices, but we may be reaching a 

point of diminishing returns where we are capitalizing on chance.  

 
mod.indices(cfa3.fit) 

 
 5 largest modification indices, A matrix: 
Strength:X.1500M  Endurance:BENCH    X.1500M:BENCH X.1500M:Strength  
        47.51062         40.07892         39.82350         34.17247  
   BENCH:X.1500M  
        33.91703  
 
  5 largest modification indices, P matrix: 
  Strength:X.1500M Strength:Endurance   HandEye:Strength    Endurance:BENCH  
          34.17247           32.66084           26.38424           24.81201  
     BENCH:X.1500M  
          22.04953 
 
 

Notice how all the modification indices are rather close, and are now much smaller than 

before. Remember that the first variable in the A matrix is the variable the arrow goes 

to, so we are looking only at paths from a latent variable to a manifest variable. Let’s 

add a path from Strength to X.1500M and see what happens. 

 
> cfa4.model <- specify.model("CFA4.txt") 
> cfa4.fit <- sem(cfa4.model, AthleticsData.R, 1000) 
> summary(cfa4.fit) 
 
Model Chisquare =  81.641   Df =  24 Pr(>Chisq) = 3.3251e-08 
 Chisquare (null model) =  2330.1   Df =  36 
 Goodness-of-fit index =  0.983 
 Adjusted goodness-of-fit index =  0.96812 
 RMSEA index =  0.049032   90% CI: (0.037601, 0.060921) 
 Bentler-Bonnett NFI =  0.96496 
 Tucker-Lewis NNFI =  0.96231 
 Bentler CFI =  0.97487 
 SRMR =  0.061516 
 BIC =  -84.145  
 
 Normalized Residuals 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-3.3500 -0.3240  0.0666  0.6760  1.3800  5.8900  
 
 Parameter Estimates 
        Estimate Std Error z value Pr(>|z|)                            
theta01  0.76727 0.032380  23.6957 0.0000e+00 X.1500M <--- Endurance   
theta02  0.61213 0.031840  19.2251 0.0000e+00 X.2KROW <--- Endurance   
theta03  0.67383 0.032764  20.5664 0.0000e+00 X.12MINTR <--- Endurance 
theta04  0.82465 0.032818  25.1282 0.0000e+00 BENCH <--- Strength      
theta05  0.68468 0.032785  20.8841 0.0000e+00 CURL <--- Strength       



theta06  0.50656 0.032462  15.6048 0.0000e+00 MAXPUSHU <--- Strength   
theta07  0.59503 0.033551  17.7352 0.0000e+00 PINBALL <--- HandEye     
theta08  0.75930 0.034697  21.8836 0.0000e+00 BILLIARD <--- HandEye    
theta09  0.74385 0.034580  21.5113 0.0000e+00 GOLF <--- HandEye        
theta10  0.35235 0.035665   9.8796 0.0000e+00 X.1500M <--> X.1500M     
theta11  0.52539 0.031764  16.5406 0.0000e+00 X.2KROW <--> X.2KROW     
theta12  0.54595 0.033784  16.1600 0.0000e+00 X.12MINTR <--> X.12MINTR 
theta13  0.31995 0.036578   8.7470 0.0000e+00 BENCH <--> BENCH         
theta14  0.53121 0.033818  15.7081 0.0000e+00 CURL <--> CURL           
theta15  0.54467 0.031649  17.2100 0.0000e+00 MAXPUSHU <--> MAXPUSHU   
theta16  0.64593 0.035543  18.1734 0.0000e+00 PINBALL <--> PINBALL     
theta17  0.42346 0.038638  10.9596 0.0000e+00 BILLIARD <--> BILLIARD   
theta18  0.44669 0.037998  11.7555 0.0000e+00 GOLF <--> GOLF           
theta19  0.47520 0.030764  15.4466 0.0000e+00 MAXPUSHU <--- Endurance  
theta20  0.35239 0.032025  11.0035 0.0000e+00 X.2KROW <--- Strength    
theta21 -0.20340 0.030502  -6.6685 2.5845e-11 X.1500M <--- Strength    
 
 Iterations =  18 

 

We can see that the added parameter has a value of –.20, and the RMSEA has 

decreased appreciably to .049, a value generally considered to represent excellent fit. 

This latest coefficient seems to imply that increased strength actually hurts performance 

in the 1500 meter run! 

 

In practical circumstances, there is no way of determining which model is “correct.” 

Indeed, one might argue that it is extremely unlikely that factor loadings (other than a 

certain small number of loadings that can always be forced to zero by rotation, as we 

will discuss later) are truly zero. On the other hand, “minor loadings” contribute little 

to the ability of the factor model to fit data, and, because of sampling error, including 

them in the model may be contributing nearly as much signal as noise.  

 

In the above example, we started with a strong “confirmatory” position, based on a 

prior understanding about the state of the world, i.e., there are 3 factors, and each 

factor has 3 indicator variables. We used modification indices to “upgrade” the model, 

and quickly ended up with a model that is parsimonious, seems to “make sense,” and 

fits well.   

 

Note that we can continue this process, by recomputing modification indices and 

upgrading the model still further. Ultimately however, we have to worry seriously about  

the extent to which we are capitalizing on chance. 

 

 



 

3. The “ExploratoryConfirmatory” Approach 
 

An alternative approach, which begins with a purely exploratory factor analysis, was 

described by Karl Jöreskog in his 1978 Presidential Address to the Psychometric 

Society. 

 

Jöreskog’s approach is as follows: 

 

 Perform an exploratory factor analysis, and decide on the number of factors, m. 

In many textbook examples, the decision is relatively clear cut. Be forewarned — 

in practice the decision may be quite difficult. 

 Fit an m-factor model, and rotate to simple structure using varimax or promax. 

(In the original article, Jöreskog said to use promax, but used varimax in his 

numerical example. We’ll use varimax.)  

 For each column of the factor pattern, find the largest loading, then constrain all 

the other loadings in that row to be zero, and fit the resulting model as a 

confirmatory factor model. This confirmatory model will have exactly the same 

discrepancy function and 2c  value as the exploratory factor analysis that 

preceded it. 

 Examine the factor pattern, and test all factor loadings. Delete “non-significant” 

loadings from the model. After checking the fit, the user can decide whether to 

terminate the process, or look for more loadings to delete.  

 

A detailed commentary on the final steps may prove helpful. Due to the well-known fact 

of rotational indeterminacy, the parameters in the exploratory factor model (where 

every factor loading is free to vary) are not uniquely determined. In the broader 

language of structural equation modeling, we say that the parameters are not 

“identified.”  

 

A parameter is a fixed numerical value. To estimate a “parameter,” it obviously follows 



that the parameter has to be identified! So in general, a model must be identified in 

some way before iteration to a best-fitting solution can be attempted. Therefore, a 

model with parameters that are not identified can propose a severe problem for general 

structural equation modeling programs like sem.  

 

Exploratory factor analysis programs achieve identification automatically during 

iteration by a variety of means, so while doing exploratory factor analysis with a 

program designed to do exploratory factor analysis, you don’t need to worry about it. 

However, when doing a “completely unrestricted” confirmatory factor analysis with 2 or 

more factors, you cannot simply start by letting all the possible p m´  factor loadings be 

free parameters. You’d discover that the solution is not identified. Depending on the 

sophistication of your program, you’d either converge to a solution and get an error 

indicator, or you’d fail to converge with a cryptic error message. sem, unfortunately, 

falls into the latter category.  Try fitting the following unrestricted 3 factor model in 

sem.  

 
## Factor 1 -- Endurance 
Endurance -> X.1500M,  theta01, NA 
Endurance -> X.2KROW,  theta02, NA 
Endurance -> X.12MINTR,theta03, NA 
Endurance  -> BENCH,    theta04, NA 
Endurance  -> CURL,     theta05, NA 
Endurance  -> MAXPUSHU, theta06, NA 
Endurance  -> PINBALL,  theta07, NA 
Endurance  -> BILLIARD, theta08, NA 
Endurance  -> GOLF,     theta09, NA 
## Factor 2 -- Strength 
Strength -> X.1500M,  theta10, NA 
Strength -> X.2KROW,  theta11, NA 
Strength -> X.12MINTR,theta12, NA 
Strength  -> BENCH,    theta13, NA 
Strength  -> CURL,     theta14, NA 
Strength  -> MAXPUSHU, theta15, NA 
Strength  -> PINBALL,  theta16, NA 
Strength  -> BILLIARD, theta17, NA 
Strength  -> GOLF,     theta18, NA 
## Factor 3 -- Hand-Eye Coordination 
Hand-Eye -> X.1500M,  theta19, NA 
Hand-Eye -> X.2KROW,  theta20, NA 
Hand-Eye -> X.12MINTR,theta21, NA 
Hand-Eye  -> BENCH,    theta22, NA 
Hand-Eye  -> CURL,     theta23, NA 
Hand-Eye  -> MAXPUSHU, theta24, NA 
Hand-Eye  -> PINBALL,  theta25, NA 
Hand-Eye  -> BILLIARD, theta26, NA 



Hand-Eye  -> GOLF,     theta27, NA 
## Unique Variances 
X.1500M   <->  X.1500M,  theta28, NA 
X.2KROW   <->  X.2KROW,  theta29, NA 
X.12MINTR <->  X.12MINTR, theta30, NA 
BENCH     <->  BENCH, theta31, NA 
CURL      <->  CURL, theta32, NA 
MAXPUSHU  <->  MAXPUSHU, theta33, NA 
PINBALL   <->  PINBALL, theta34, NA 
BILLIARD  <->  BILLIARD, theta35, NA 
GOLF      <->  GOLF, theta36, NA 
## Factor Variances 
Endurance <->  Endurance, NA, 1 
Strength  <->  Strength,  NA, 1 
Hand-Eye  <->  Hand-Eye,  NA, 1 
## Factor Correlations 
Endurance <->  Strength, theta37, NA 
Endurance <->  Hand-Eye, theta38, NA 
Strength  <->  Hand-Eye, theta39, NA 

 

You’ll see the following error message: 

 
Error in solve.default(C[ind, ind]) :  
  Lapack routine dgesv: system is exactly singular 
 

 

With the advantage of a substantial amount of experience, you might be able to 

interpret this message as follows:  

 During iteration, the program tries to invert a matrix that is a scalar multiple of 

an estimated variance-covariance matrix of the parameter estimates.  

 If some parameters are functionally related to others, this estimated asymptotic 

covariance matrix will be singular 

 The system is not “identified,” because some parameters are not needed — they 

are determinate functions of other parameters 
 

According to Jöreskog (1978), you can identify a common factor model by setting at 

least 1k -  loadings in each column of the factor pattern to zero. He provides a scheme 

for doing this automatically, based on examination of the pattern after rotating to 

simple structure. Jöreskog’s explanation of this step was somewhat terse, and he does 

not describe in detail why the system works. In looking carefully at the algebra, we’ll 

discover that some of the “free parameters” in a common factor pattern are not “really 

free” as you might expect. In other words, if you set up a confirmatory factor model 



with all p variables loading on all m factors, and all m factors allowed to correlate with 

each other, you will have pm factor loadings and p unique variances, plus ( 1)/ 2m m -  

nonredundant factor intercorrelations, yet the “true number of free parameters” is not 

really ( 1) / 2pm p m m+ + - .  Why not? 

 

The answer stems from the following facts. First, suppose the orthogonal factor model 

fits, and  

 = +y Fx e  

with F a p m´  factor pattern of full column rank, with the standard restrictions in 

place. First of all, recall the fact of rotational indeterminacy, and assume the factors are 

allowed to be correlated after rotation by a matrix T. Then if = +y Fx e , it must also 

be true that -1= +y FTT x e  for any nonsingular matrix T, so the common factor model 

must still fit with new pattern * =F FT  and new factors 1* -=x T x  with covariance 

matrix 1 1- - ¢T T . In general, we wish to retain the restriction that the common factors 

have unit variance after rotation by 1-T . So we impose the restriction on 1-T  that 

1 1diag( ) diag( )- - ¢ =T T I . 

 

Now, suppose that we isolate an m m´  submatrix of F. Note that by suitable 

permutation of the (arbitrary) ordering of the variables in y, we can always manipulate 

this submatrix into the upper m rows of F. So we can write F in partitioned form as  

 1

2

é ù
ê ú= ê ú
ê úë û

F
F

F
 

Suppose that 
1

F  is nonsingular, and let 1 1

1

- -=T F D , where D is a positive definite 

diagonal scaling matrix. Then  
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Note that the upper m m´  submatrix of *F is diagonal, and contains 
2 ( 1)m m m m- = -  zeroes. In other words, it is inevitable that any factor pattern can 

be rotated obliquely to include that many zeroes. Notice that rotation to this position 



has absolutely no effect on how well the model fits. So instead of “really” having pm 

free factor loadings, we have ( 1)pm m m- -  loadings that are actually free to be 

nonzero. 

 

In the previous formula, we did not specify how to calculate the scaling matrix D. 

However, it is determined by the restriction that the rotated factors still have unit 

variance.  This requirement means that 1 1diag( ) diag( )- - ¢ =T T I .  Since 

1 1

1 1
diag( ) diag( )- - ¢ ¢=T T DFF D , it is clear that we can force the latter matrix to have 

ones on its diagonal by simply setting 1/2

1 1
diag ( )- ¢=D FF , or, equivalently  

 1 1

1 1

1 1/2

1 1
diag ( )- -- ¢= =T F D F FF  (1) 

Since T operates on the rows of F independently, we do not need to rearrange the rows 

of F to manipulate desired rows into the upper m m´  submatrix. Rather, we simply 

construct 
1

F  from the desired rows and apply Equation 1.  

 

A purely hypothetical example constructed using R should help make the above ideas 

clear. Suppose we have a factor analysis based on 6 variables and two factors. We 

observe the following factor pattern: 

 
> F <- matrix(c(.6,.5,.58,.2,.1,.05,.09,.11,.07,.71,.62,.66),6,2) 
> F 
     [,1] [,2] 
[1,] 0.60 0.09 
[2,] 0.50 0.11 
[3,] 0.58 0.07 
[4,] 0.20 0.71 
[5,] 0.10 0.62 
[6,] 0.05 0.66 
 

Notice that row 1 has the highest loading for factor 1, and row 4 has the highest loading 

for factor 2. The preceding algebra says that we can actually rotate these two “marker” 

rows (and the rest of F) so that the other two values in the “marker” rows are zero.  

  



Pull out rows 1 and 4, and call them 
1

F . 
 
> F1 <- rbind(F[1,], F[4,]) 
> F1 
     [,1] [,2] 
[1,]  0.6 0.09 
[2,]  0.2 0.71 
 

Then construct T via Equation 1 as 
 
> T <- solve(F1) %*% diag ( sqrt( diag(F1 %*% t(F1) ) ) ) 
 

We can readily verify that the resulting T rotates F into the desired configuration, and 

that 1 1diag( ) diag( )- - ¢ =T T I : 

 
> zapsmall(F %*% T) ## use zapsmall to eliminate scientific notation 
           [,1]       [,2] 
[1,]  0.6067125  0.0000000 
[2,]  0.4951844  0.0379663 
[3,]  0.5915446 -0.0184408 
[4,]  0.0000000  0.7376313 
[5,] -0.0788131  0.6562749 
[6,] -0.1434994  0.7078007 
 
> solve(T) %*% t (solve(T)) 
          [,1]      [,2] 
[1,] 1.0000000 0.4109221 
[2,] 0.4109221 1.0000000 
 

This rotated version of the original F will exactly match the F we get if we fit a 

confirmatory factor model with correlated factors and fixed zeroes in the appropriate 

positions. Let’s try this with the AthleticsData example. We pull the factor loadings out 

of the results, place them in a matrix, and add the variable names to help us keep track 

 
> exploratory <- factanal(AthleticsData, factors = 3) 
> F <- matrix(exploratory$loadings[1:27],9,3) 
> rownames(F) <- colnames(AthleticsData) 
> F 
                  [,1]        [,2]       [,3] 
PINBALL   -0.005893274  0.13056931 0.58976923 
BILLIARD   0.023633952  0.03187533 0.76469736 
GOLF       0.048166786  0.05164699 0.73454363 
X.1500M    0.778911631 -0.17862424 0.01582561 
X.2KROW    0.584828226  0.37187300 0.01224432 
X.12MINTR  0.677605546 -0.03963524 0.03780637 
BENCH     -0.118897796  0.81551057 0.13732357 
CURL      -0.022681822  0.67410438 0.09591605 
MAXPUSHU   0.432998769  0.52198807 0.02011158 

 



The highest loading in the first column is in row 4, the highest loading in the second 

column is in row 7, and the highest loading in the third column is in row 2. We extract 

these three rows, bind them into the matrix 
1

F , and then construct T as before.  
> F1 <- rbind(F[4,], F[7,],F[2,]) 
> F1 
            [,1]        [,2]       [,3] 
[1,]  0.77891163 -0.17862424 0.01582561 
[2,] -0.11889780  0.81551057 0.13732357 
[3,]  0.02363395  0.03187533 0.76469736 
> T <- solve(F1) %*% diag ( sqrt(diag(F1 %*% t(F1)))) 
> rotated.F <- zapsmall (F %*% T) 
> rotated.F 
                [,1]      [,2]       [,3] 
PINBALL   -0.0085167 0.1073794  0.5730588 
BILLIARD   0.0000000 0.0000000  0.7657262 
GOLF       0.0304990 0.0287544  0.7301948 
X.1500M    0.7992874 0.0000000  0.0000000 
X.2KROW    0.6819869 0.5409817 -0.0902969 
X.12MINTR  0.7131092 0.1225123  0.0035555 
BENCH      0.0000000 0.8354950  0.0000000 
CURL       0.0811407 0.7101584 -0.0224437 
MAXPUSHU   0.5444078 0.6636849 -0.0998862 

 

The rotation worked, and the new rotated factors have the following correlation matrix: 

 
> solve(T) %*% t( solve(T) ) 
            [,1]       [,2]       [,3] 
[1,]  1.00000000 -0.3535600 0.04054807 
[2,] -0.35355999  1.0000000 0.20038064 
[3,]  0.04054807  0.2003806 1.00000000 
 

Let’s verify that we get exactly the same solution if we set up a confirmatory factor 

model with all loadings free except for the zeroes we rotated into position in rows 2,4 

and 7.  It’ll help if we add column names to the factor pattern: 

 
> colnames(rotated.F) <- c("Endurance","Strength","Hand-Eye") 
> rotated.F 
           Endurance  Strength   Hand-Eye 
PINBALL   -0.0085167 0.1073794  0.5730588 
BILLIARD   0.0000000 0.0000000  0.7657262 
GOLF       0.0304990 0.0287544  0.7301948 
X.1500M    0.7992874 0.0000000  0.0000000 
X.2KROW    0.6819869 0.5409817 -0.0902969 
X.12MINTR  0.7131092 0.1225123  0.0035555 
BENCH      0.0000000 0.8354950  0.0000000 
CURL       0.0811407 0.7101584 -0.0224437 
MAXPUSHU   0.5444078 0.6636849 -0.0998862 
 

The easiest way to construct the initial confirmatory factor model is to take a complete 

model with all loadings, then simply eliminate the zero loadings by erasing their lines 



from the model file, or by commenting them out with ## as shown below. There is no 

need to “renumber” the names given to the parameter numbers.  

 
## Factor 1 -- Endurance 
Endurance -> X.1500M,  theta01, NA 
Endurance -> X.2KROW,  theta02, NA 
Endurance -> X.12MINTR,theta03, NA 
## Endurance  -> BENCH,theta04, NA 
Endurance  -> CURL,     theta05, NA 
Endurance  -> MAXPUSHU, theta06, NA 
Endurance  -> PINBALL,  theta07, NA 
## Endurance  -> BILLIARD, theta08, NA 
Endurance  -> GOLF,     theta09, NA 
## Factor 2 -- Strength 
## Strength -> X.1500M,  theta10, NA 
Strength -> X.2KROW,  theta11, NA 
Strength -> X.12MINTR,theta12, NA 
Strength  -> BENCH,    theta13, NA 
Strength  -> CURL,     theta14, NA 
Strength  -> MAXPUSHU, theta15, NA 
Strength  -> PINBALL,  theta16, NA 
## Strength  -> BILLIARD, theta17, NA 
Strength  -> GOLF,     theta18, NA 
## Factor 3 -- Hand-Eye Coordination 
## Hand-Eye -> X.1500M,  theta19, NA 
Hand-Eye -> X.2KROW,  theta20, NA 
Hand-Eye -> X.12MINTR,theta21, NA 
##  Hand-Eye  -> BENCH,    theta22, NA 
Hand-Eye  -> CURL,     theta23, NA 
Hand-Eye  -> MAXPUSHU, theta24, NA 
Hand-Eye  -> PINBALL,  theta25, NA 
Hand-Eye  -> BILLIARD, theta26, NA 
Hand-Eye  -> GOLF,     theta27, NA 
## Unique Variances 
X.1500M   <->  X.1500M,  theta28, NA 
X.2KROW   <->  X.2KROW,  theta29, NA 
X.12MINTR <->  X.12MINTR, theta30, NA 
BENCH     <->  BENCH, theta31, NA 
CURL      <->  CURL, theta32, NA 
MAXPUSHU  <->  MAXPUSHU, theta33, NA 
PINBALL   <->  PINBALL, theta34, NA 
BILLIARD  <->  BILLIARD, theta35, NA 
GOLF      <->  GOLF, theta36, NA 
## Factor Variances 
Endurance <->  Endurance, NA, 1 
Strength  <->  Strength,  NA, 1 
Hand-Eye  <->  Hand-Eye,  NA, 1 
## Factor Correlations 
Endurance <->  Strength, theta37, NA 
Endurance <->  Hand-Eye, theta38, NA 
Strength  <->  Hand-Eye, theta39, NA 
 

We save this model definition to a file called “Full AthleticsData Model.txt” and fit it 

with the following commands: 

 
> base.model <-  specify.model("Full AthleticsData Model.txt") 
Read 36 records 
> base.model.fit <- sem(base.model, AthleticsData.R, 1000) 
> summary(base.model.fit) 
 
 Model Chisquare =  13.016   Df =  12 Pr(>Chisq) = 0.36787 
 Chisquare (null model) =  2330.1   Df =  36 
 Goodness-of-fit index =  0.99718 



 Adjusted goodness-of-fit index =  0.98943 
 RMSEA index =  0.0092067   90% CI: (NA, 0.034233) 
 Bentler-Bonnett NFI =  0.99441 
 Tucker-Lewis NNFI =  0.99867 
 Bentler CFI =  0.99956 
 SRMR =  0.0083836 
 BIC =  -69.877  
 
 Normalized Residuals 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
-7.28e-01 -6.03e-02  3.58e-06  2.03e-03  5.30e-02  6.75e-01  
 
 Parameter Estimates 
        Estimate   Std Error z value  Pr(>|z|)                            
theta01  0.7992863 0.032454  24.62791 0.0000e+00 X.1500M <--- Endurance   
theta02  0.6819851 0.037465  18.20328 0.0000e+00 X.2KROW <--- Endurance   
theta03  0.7131082 0.035756  19.94376 0.0000e+00 X.12MINTR <--- Endurance 
theta05  0.0811397 0.033591   2.41551 1.5713e-02 CURL <--- Endurance      
theta06  0.5444060 0.036702  14.83334 0.0000e+00 MAXPUSHU <--- Endurance  
theta07 -0.0085169 0.036086  -0.23601 8.1342e-01 PINBALL <--- Endurance   
theta09  0.0304986 0.035300   0.86399 3.8759e-01 GOLF <--- Endurance      
theta11  0.5409809 0.038606  14.01292 0.0000e+00 X.2KROW <--- Strength    
theta12  0.1225113 0.035842   3.41809 6.3062e-04 X.12MINTR <--- Strength  
theta13  0.8354945 0.032119  26.01248 0.0000e+00 BENCH <--- Strength      
theta14  0.7101566 0.036427  19.49523 0.0000e+00 CURL <--- Strength       
theta15  0.6636826 0.038615  17.18738 0.0000e+00 MAXPUSHU <--- Strength   
theta16  0.1073757 0.036889   2.91075 3.6057e-03 PINBALL <--- Strength    
theta18  0.0287492 0.036641   0.78461 4.3268e-01 GOLF <--- Strength       
theta20 -0.0902962 0.036492  -2.47439 1.3346e-02 X.2KROW <--- HandEye     
theta21  0.0035565 0.034536   0.10298 9.1798e-01 X.12MINTR <--- HandEye   
theta23 -0.0224436 0.033400  -0.67197 5.0160e-01 CURL <--- HandEye        
theta24 -0.0998858 0.036133  -2.76440 5.7027e-03 MAXPUSHU <--- HandEye    
theta25  0.5730593 0.034658  16.53460 0.0000e+00 PINBALL <--- HandEye     
theta26  0.7657239 0.034999  21.87871 0.0000e+00 BILLIARD <--- HandEye    
theta27  0.7301998 0.036511  19.99932 0.0000e+00 GOLF <--- HandEye        
theta28  0.3611397 0.034815  10.37297 0.0000e+00 X.1500M <--> X.1500M     
theta29  0.5195373 0.031951  16.26021 0.0000e+00 X.2KROW <--> X.2KROW     
theta30  0.5378512 0.033371  16.11730 0.0000e+00 X.12MINTR <--> X.12MINTR 
theta31  0.3019493 0.035269   8.56143 0.0000e+00 BENCH <--> BENCH         
theta32  0.5358710 0.033143  16.16860 0.0000e+00 CURL <--> CURL           
theta33  0.5396369 0.031860  16.93766 0.0000e+00 MAXPUSHU <--> MAXPUSHU   
theta34  0.6350901 0.034811  18.24382 0.0000e+00 PINBALL <--> PINBALL     
theta35  0.4136680 0.039453  10.48518 0.0000e+00 BILLIARD <--> BILLIARD   
theta36  0.4554507 0.037795  12.05056 0.0000e+00 GOLF <--> GOLF           
theta37 -0.3535592 0.042714  -8.27737 2.2204e-16 Strength <--> Endurance  
theta38  0.0405418 0.050557   0.80190 4.2261e-01 HandEye <--> Endurance   
theta39  0.2003873 0.047973   4.17704 2.9532e-05 HandEye <--> Strength    
 
 Iterations =  88  
 

As you can see, the above output precisely matches our rotated simple structure 

solution, except now we have standard error estimates and test statistics associated with 

all the parameters. The hypothesis of perfect fit is no longer even rejected (p = .37), and 

the fit indices are better than one usually sees in practice.  

 

One aspect of the above output might confuse the novice, so let me digress for a 

moment. I stated that this “identified” unrestricted model has exactly the same fit as an 

unrestricted model fit by a “dedicated” factor analysis program such as factanal.  



However, in this case, we see a chi square statistic of 13.016, while in our previous 

investigation using factanal gave a chi square of 12.94. Why the discrepancy?  

 

The answer is that the chi square statistic is, in general, computed by multiplying the 

maximum likelihood discrepancy function by a “multiplier.” Most general purpose 

structural equation modeling programs use a multiplier of 1N - , while many dedicated 

factor analysis programs use the “Bartlett multiplier”  
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 If you examine the factanal output with the command 

 
> exploratory$criteria 
      objective counts.function counts.gradient  
     0.01302917     11.00000000     11.00000000 
 

you discover that the discrepancy function is .01302917. The Bartlett multiplier is 

992.1667, which when multipled by the discrepancy function gives the stated chi square 

value of 12.94. If we multiply the discrepancy by 1N - , we obtain 13.016, the value 

given by sem. We can also examine the discrepancy function directly, with the 

command 

 
> base.model.fit$criterion 
[1] 0.01302917 

 

The next step, according to Jöreskog (1978), is to pare down the model by eliminating 

factor loadings that are not significant, and then re-estimating the model.  If we 

eliminate all paths that are not significant with p < .05, two-tailed, this amounts to 

eliminating all paths with z-statistics less than 1.96 in absolute value. I highlighted all 

the loading (directed) paths in the output above. Effectively eliminating them by 

placing ## in front of them, and fitting the revised model, we get 

 
 Model Chisquare =  14.824   Df =  17 Pr(>Chisq) = 0.60814 
 Chisquare (null model) =  2330.1   Df =  36 
 Goodness-of-fit index =  0.99678 
 Adjusted goodness-of-fit index =  0.99147 
 RMSEA index =  0   90% CI: (NA, 0.024988) 
 Bentler-Bonnett NFI =  0.99364 
 Tucker-Lewis NNFI =  1.002 
 Bentler CFI =  1 



 SRMR =  0.010374 
 BIC =  -102.61  
 
 Normalized Residuals 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.  
-7.48e-01 -1.48e-01 -9.49e-06 -1.56e-02  6.34e-02  1.12e+00  
 
 Parameter Estimates 
        Estimate  Std Error z value Pr(>|z|)                            
theta01  0.798679 0.032453  24.6106 0.0000e+00 X.1500M <--- Endurance   
theta02  0.682514 0.037419  18.2398 0.0000e+00 X.2KROW <--- Endurance   
theta03  0.714667 0.035439  20.1663 0.0000e+00 X.12MINTR <--- Endurance 
theta05  0.079109 0.033130   2.3878 1.6949e-02 CURL <--- Endurance      
theta06  0.545619 0.036620  14.8994 0.0000e+00 MAXPUSHU <--- Endurance  
theta11  0.540617 0.038419  14.0717 0.0000e+00 X.2KROW <--- Strength    
theta12  0.123926 0.034505   3.5915 3.2875e-04 X.12MINTR <--- Strength  
theta13  0.837604 0.032037  26.1446 0.0000e+00 BENCH <--- Strength      
theta14  0.703326 0.034641  20.3035 0.0000e+00 CURL <--- Strength       
theta15  0.663589 0.038425  17.2695 0.0000e+00 MAXPUSHU <--- Strength   
theta16  0.103959 0.031970   3.2517 1.1471e-03 PINBALL <--- Strength    
theta20 -0.085985 0.033327  -2.5801 9.8785e-03 X.2KROW <--- HandEye     
theta24 -0.094708 0.033368  -2.8382 4.5363e-03 MAXPUSHU <--- HandEye    
theta25  0.574036 0.034090  16.8387 0.0000e+00 PINBALL <--- HandEye     
theta26  0.762281 0.034516  22.0849 0.0000e+00 BILLIARD <--- HandEye    
theta27  0.740866 0.034353  21.5664 0.0000e+00 GOLF <--- HandEye        
theta28  0.362112 0.034793  10.4077 0.0000e+00 X.1500M <--> X.1500M     
theta29  0.520594 0.031931  16.3039 0.0000e+00 X.2KROW <--> X.2KROW     
theta30  0.536656 0.033361  16.0861 0.0000e+00 X.12MINTR <--> X.12MINTR 
theta31  0.298420 0.035146   8.4910 0.0000e+00 BENCH <--> BENCH         
theta32  0.538503 0.032873  16.3815 0.0000e+00 CURL <--> CURL           
theta33  0.540087 0.031881  16.9410 0.0000e+00 MAXPUSHU <--> MAXPUSHU   
theta34  0.635539 0.034737  18.2958 0.0000e+00 PINBALL <--> PINBALL     
theta35  0.418927 0.038344  10.9256 0.0000e+00 BILLIARD <--> BILLIARD   
theta36  0.451118 0.037473  12.0386 0.0000e+00 GOLF <--> GOLF           
theta37 -0.354331 0.042603  -8.3170 0.0000e+00 Strength <--> Endurance  
theta38  0.049396 0.042759   1.1552 2.4800e-01 HandEye <--> Endurance   
theta39  0.202231 0.041354   4.8902 1.0071e-06 HandEye <--> Strength    
 
 Iterations =  23 
 

A final step, according to Jöreskog, is to check modification indices to see if any zero 

loadings might be relaxed. 

 
> mod.indices(pared.model.fit) 

 

The results show that no potential loading from a factor to an observed variable makes 

the list of highest modification indices in the A matrix, and only one of them suggests a 

significant improvement in the chi square statistic, because the significance value for a 
2c  with one degree of freedom is 3.84. 

 
 5 largest modification indices, A matrix: 
    GOLF:X.2KROW BILLIARD:X.2KROW     X.2KROW:GOLF        CURL:GOLF X.1500M:MAXPUSHU  
        3.933301         2.005178         1.417790         1.128748         0.968813  
 
  5 largest modification indices, P matrix: 
      X.2KROW:GOLF     X.12MINTR:GOLF   X.2KROW:BILLIARD   MAXPUSHU:X.1500M MAXPUSHU:X.12MINTR  
          4.427690           2.845399           2.576033           2.101112           2.016665 

 



This final model has fit statistics that are incredibly good. The point estimate for the 

RMSEA is zero, and the p-value for the test of perfect fit is .61. The hypothesis of 

perfect fit cannot be rejected. 

 

Before ending this discussion, I’d like to sound some cautionary notes, and add some 

food for thought. First and foremost, the statistics generated by sem and several other 

programs like it assume that (a) a sample covariance matrix with (b) a Wishart 

distribution is being analyzed. The distribution theory, overall test of fit, and standard 

error estimates are all based on that assumption. Assumption (a) is clearly violated in 

this situation, as, true to tradition, we actually analyzed the correlation matrix. Now, in 

a sense, a correlation matrix is a covariance matrix, but the sample correlation matrix 

does not have the same distribution as the sample covariance matrix from which it is 

calculated. To see why, simply look at each element of the correlation matrix. The 

diagonal entries do not vary randomly — they are always 1 — while the elements on 

the diagonal of a sample covariance matrix are, of course, free to vary. Lawley and 

Maxwell (1970) pointed this out in their book on factor analysis, and showed the extent 

of the error in the standard error estimates that could result from analyzing the sample 

correlation matrix as though it were a correlation matrix. The earliest commercial 

software program, LISREL, was based on a computational engine that assumed a 

covariance matrix was being analyzed. For years, LISREL produced incorrect standard 

error estimates from a sample correlation matrix, and, in fact, featured examples of the 

same in its manual. The chi square statistic and parameter estimates are not affected by 

this error when a factor model is estimated, but the standard errors can be substantially 

in error. 

 

In practice, assumption (b), which amounts in practice to an assumption of multivariate 

normality, is also violated frequently. Although “asymptotically distribution free” 

(ADF) methods are available to compensate for this, they don’t work very well unless 

sample sizes are quite large.  

 

If you think carefully about what we did in our two approaches to confirmatory factor 

analysis, you will realize that a number of aspects were questionable, because the 



procedures violated some long established principles of statistical analysis. In addition to 

some truly questionable aspects of the procedures, other things we did were somewhat 

arbitrary. For example, we decided to stop freeing up factor loadings in our first 

approach, when the modification indices showed we could continue to produce 

significant improvements in the overall fit statistic. In the second procedure, we used 

the .05 significance level to establish our cutoff for deciding if a loading is 

“insignificant.” What would have happened if we’d considered familywise error rate? 

These are issues we will discuss in class. 


