
Confirmatory Factor Analysis with R
James H. Steiger

Traditional Exploratory factor analysis (EFA) is often not purely exploratory in nature.

The data analyst brings to the enterprise a substantial amount of intellectual baggage

that affects the selection of variables, choice of a number of factors, the naming of

factors, and in some cases the way factors are rotated to simple structure. So to some

extent, EFA is actually confirmatory in nature.

Confirmatory factor analysis (CFA) provides a more explicit framework for confirming

prior notions about the structure of a domain of content. CFA adds the ability to test

constraints on the parameters of the factor model to the methodology of EFA.

In practice, people frequently combine EFA and CFA, to the extent that the

appropriate statistical model is not actually determinable. However, we’ll begin with an

example of purely confirmatory factor analysis.

1 . “Pure” Confirmatory Factor Analysis

Consider the Athletics Data example we examined in conjunction with EFA. Suppose

that, prior to analyzing the data, we hypothesized that there were 3 uncorrelated factors

called Endurance, Strength, and Hand-Eye Coordination, and that each factor has non-

zero loadings on only 3 variables. Such a hypothesis is, of course, extremely unlikely to

be true, a point we will return to later. Taken literally, with a suitable ordering of the 9

observed variables, this hypothesis implies that the common factor pattern is of the

form

1

2

3

4

5

6

7

8

9

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

q
q
q

q
q
q

q
q
q

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

F

There are a number of equivalent ways of writing this CFA model. One states that

 = +y Fx e

where F has the form shown above, and x and e are vectors of random variables such

that ()E ¢ =xe 0 , 2()E ¢ =ee U , and ()E ¢ =xx I . 2U is a diagonal matrix of positive

values, and hence may be written in the form (zero entries not shown):

10

11

12

13

14

15

16

7

8

2

1

1

q
q

q
q

q
q

q
q

q

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

U

1.1 Diagramming a Confirmatory Factor Model

This model may be written as a path diagram, as shown on the next page. Note that

the variances of the common factors are not shown explicitly in the diagram. According

to our conventions, they are therefore assumed to have a variance of 1.

Note also that the coefficient from a residual to an observed variable is not labeled in

the diagram, while the coefficient from a common factor to an observed variable is

labeled. For example, the coefficient from
1

x (“Endurance”) to
1

y (“1500 Meter Run”) is

1
q . This means that this coefficient is a free parameter that is estimated by the CFA

software. On the other hand, the coefficient from
1
e to

1
y (“1500 Meter Run”) is not

labeled, and is therefore assumed to be a fixed value of 1.

1
q

2
q

3
q

10
q

11
q

12
q

4
q

5
q

6
q

13
q

14
q

15
q

7
q

8
q

9
q

16
q

17
q

18
q

So the top part of the diagram, shown below, stands for the equation

1 1 1 1
y xq e= + ,

where
1

x has a variance of 1 and
1
e has a variance of

10
q .

1
q

10
q

Recall that, in any path diagram, variables are either manifest or latent, and either

exogenous or endogenous. Here are some questions for you. See if you can answer them,

then check your answers in the footnote1 below. What kind of variable is “Endurance”

in the preceding diagram? What kind of variable is “1500 Meter Run”? What kind of

variable is “
1
e ”?

A number of programs are available to fit confirmatory factor analysis models to data.

Some of these programs are free. One such program is available as the R package sem.

Another is the program Mx.

Our diagramming system transparently connects with the standard linear equations

coding of a structural equation model. Each and every linear equation has a

corresponding element in the diagram. Moreover, each path in the diagram can be coded

unambiguously in an ASCII computer language called PATH1 (Steiger, 1988).

1.2 The sem program and the RAM Diagramming System

The sem package has the capability of decoding a language and diagramming system

that follows our general rules for path diagrams (except that it requires latent variable

variances of 1 to be represented explicitly). However, it is better designed

computationally to handle a slightly abbreviated diagramming system that makes a

couple of exceptions to these rules. This latter diagramming system, which I will call

RAM, does not maintain a direct visual correspondence with the underlying linear

equation system. When we discuss the major algebraic approaches to path models (the

LISREL, RAM1, RAM2, Bentler-Weeks, and EzPath models), we will discuss the

1 “Endurance” is latent-exogenous, “1500 Meter Run” is manifest-endogenous, and “e1” is latent-

exogenous.

distinction between the original (RAM1) specification of J. J. McArdle, and the

improved RAM2 model specification that sem is designed around.

The RAM diagramming system is similar to the system we have described above, with

one major exception — residual latent variables are not represented explicitly. A

residual latent variable is an exogenous latent variable that has a single directed path

(single headed arrow) to a target endogenous variable. For example,
1
e is a residual

latent variable. In the RAM diagramming system, residual latent variables have their

variances and covariances represented as variances and covariances attached to their

targets. Below we show the previous path diagram in the RAM system (with unit

variances for the factors shown explicitly.

1
q

2
q

3
q

12
q

4
q

5
q

6
q

13
q

14
q

15
q

7
q

8
q

9
q

16
q

17
q

18
q

10
q

11
q

The two-headed arrows, or “slings,” mean something different on the left side of the

diagram than they do on the right side of the diagram. On the left side, they stand for

the variances of the latent variables, while on right side, they are the variances of the

(hidden) residual variables. This system is visually more compact in its use of space

than the system described earlier, because some objects are not represented explicitly.

On the other hand, this system requires more effort to decode, because (a) there are

more arrowheads, and (b) the meaning of a two-headed arrow varies, depending on the

status of the target variable it is attached to, which in turn has to be determined by

examining whether the target variable is endogenous or exogenous. This double usage

of the two-headed arrow also rules out other possible usages in a more complex system.

For example, some systems allow unit variance constraints to be placed on the variances

of endogenous latent variables, and these constraints are indicated in the path diagram

with a two-headed arrow attached to the endogenous latent variable. (The residual

variance is indicated with an explicit residual variable.) This system cannot be

employed in conjunction with the RAM system.

The sem package can decode a model represented in the RAM path diagramming

system rather easily. For each sling or arrow, the user includes a line in a rather natural

ASCII language. Each line is of the form

<Relation>, <Parameter Symbol>, <Parameter Value>

<Relation> indicates the arrow or sling. Arrows are represented in the form

name1 -> name2

Slings (two-headed arrows) are represented as

name1 <-> name2

The <Parameter Symbol> is a label used to uniquely identify a free parameter. If the

parameter symbol is NA, the path has a fixed value. If two paths have the same free

parameter label, the numerical value for that parameter is constrained to be the same

for both paths.

The <Parameter Value> is the starting value for iteration if the parameter is free (a

value of NA will cause the program to use an automatic starting value), the fixed

numerical value if the parameter symbol is NA and the value is fixed.

To see how this system works, compare the code on the following page with the path

diagram. Note that you must use the variable names in the data file. I’ve included some

comment lines to set off key areas of the code.

Factor 1 -- Endurance
Endurance -> X.1500M, theta01, NA
Endurance -> X.2KROW, theta02, NA
Endurance -> X.12MINTR,theta03, NA
Factor 2 -- Strength
Strength -> BENCH, theta04, NA
Strength -> CURL, theta05, NA
Strength -> MAXPUSHU, theta06, NA
Factor 3 -- Hand-Eye Coordination
Hand-Eye -> PINBALL, theta07, NA
Hand-Eye -> BILLIARD, theta08, NA
Hand-Eye -> GOLF, theta09, NA
Unique Variances
X.1500M <-> X.1500M, theta10, NA
X.2KROW <-> X.2KROW, theta11, NA
X.12MINTR <-> X.12MINTR, theta12, NA
BENCH <-> BENCH, theta13, NA
CURL <-> CURL, theta14, NA
MAXPUSHU <-> MAXPUSHU, theta15, NA
PINBALL <-> PINBALL, theta16, NA
BILLIARD <-> BILLIARD, theta17, NA
GOLF <-> GOLF, theta18, NA
Factor Variances fixed at 1
Endurance <-> Endurance, NA, 1
Strength <-> Strength, NA, 1
Hand-Eye <-> Hand-Eye, NA, 1

Suppose we save the above code into an ASCII file called CFA1.txt (say, with

NotePad). After loading the Hmisc library, loading the AthleticsData file and attaching

it with the following 3 lines, we are ready to go.

> library(Hmisc)
> AthleticsData <- spss.get("AthleticsData.sav")
> attach(AthleticsData)

We begin by computing a correlation matrix for analysis.

> AthleticsData.R <- cor(AthleticsData)

After loading the sem package, we then translate the confirmatory factor model

> library(sem)
> cfa1.model <- specify.model("CFA1.txt")

We are now ready to fit the model and save our results to a model fit object.

A single command does the trick.

> cfa1.fit <- sem(cfa1.model, AthleticsData.R, 1000)

Requesting a summary of the fit produces the following:

> summary(cfa1.fit)
Model Chisquare = 526.26 Df = 27 Pr(>Chisq) = 0
Chisquare (null model) = 2330.1 Df = 36
Goodness-of-fit index = 0.90479
Adjusted goodness-of-fit index = 0.84131
RMSEA index = 0.13605 90% CI: (0.12603, 0.14632)
Bentler-Bonnett NFI = 0.77415
Tucker-Lewis NNFI = 0.70983
Bentler CFI = 0.78237
SRMR = 0.12188
BIC = 339.75

Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.530000 -0.000042 0.823000 1.710000 2.880000 14.000000

Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
theta01 0.71071 0.037397 19.0046 0.0000e+00 X.1500M <--- Endurance
theta02 0.53435 0.035011 15.2623 0.0000e+00 X.2KROW <--- Endurance
theta03 0.75095 0.038010 19.7568 0.0000e+00 X.12MINTR <--- Endurance
theta04 0.78082 0.039534 19.7508 0.0000e+00 BENCH <--- Strength
theta05 0.72157 0.038483 18.7502 0.0000e+00 CURL <--- Strength
theta06 0.48429 0.034890 13.8805 0.0000e+00 MAXPUSHU <--- Strength
theta07 0.59504 0.033551 17.7353 0.0000e+00 PINBALL <--- HandEye
theta08 0.75930 0.034697 21.8836 0.0000e+00 BILLIARD <--- HandEye
theta09 0.74385 0.034580 21.5114 0.0000e+00 GOLF <--- HandEye
theta10 0.49489 0.042484 11.6491 0.0000e+00 X.1500M <--> X.1500M
theta11 0.71447 0.037980 18.8119 0.0000e+00 X.2KROW <--> X.2KROW
theta12 0.43608 0.044934 9.7048 0.0000e+00 X.12MINTR <--> X.12MINTR
theta13 0.39032 0.049199 7.9335 2.2204e-15 BENCH <--> BENCH
theta14 0.47934 0.044755 10.7103 0.0000e+00 CURL <--> CURL
theta15 0.76546 0.038557 19.8527 0.0000e+00 MAXPUSHU <--> MAXPUSHU
theta16 0.64593 0.035543 18.1734 0.0000e+00 PINBALL <--> PINBALL
theta17 0.42346 0.038638 10.9599 0.0000e+00 BILLIARD <--> BILLIARD
theta18 0.44668 0.037998 11.7554 0.0000e+00 GOLF <--> GOLF

Iterations = 19

The above output shows that the solution converged in 19 iterations, yielding a model
2c statistic of 526.26 with 27 degrees of freedom. Where did this “degrees of freedom”

value come from? In general, it is the number of non-redundant elements of the

covariance p p´ matrix minus the number of free parameters. In this case, the

covariance matrix is 9 9´ , so there are (1)/ 2 9(9 1)/ 2 45p p + = + = non-redundant

elements. Since there are 18 free parameters (
1
q through

18
q), there are 45 18 27- =

degrees of freedom.

This 2c value, of course, has a p-value far below .001, and so the null hypothesis of

perfect fit is rejected. The output also includes parameter values, estimates of their

standard errors, and asymptotically normal statistics testing the hypothesis that the

parameter value is zero in the population. One can also construct an approximate 95%

confidence interval by taking the estimate plus or minus two standard errors.

1.3 Evaluating and Improving Model Fit

The fact that the hypothesis of perfect fit is rejected is, in itself, not very informative —

the common factor model is highly constrained, and with a sample size of 1000, we have

excellent power to detect even minor levels of misfit. The more important statistical

questions are, (a) how bad is the misfit, and (b) how precisely have we have we

determined the degree of misfit. For a detailed account of several of these indices and

their theoretical basis, see the course handout on “Indices of Fit in Structural Equation

Modeling.”

The fact that the RMSEA confidence interval ranges from .126 to .146 suggests to many

people that the model fit, in this case, can definitely be improved. Of course, we know

from the earlier exploratory factor analysis of these same data that there are two

moderately high “crossover loadings” that are not included in the model we just

evaluated, so this model is definitely missing some key elements. However, suppose we

did not know that? How would we proceed?

The “pure” confirmatory approach would suggest that we not proceed at all! We had a

model, it doesn’t fit, and “well — that’s it.” Of course, in general people do proceed,

sometimes at the peril of objective scientific values. Below, we sketch two popular

approaches to arriving at a confirmatory factor model through a mixture of exploratory

and confirmatory approaches.

2. The “Confirm and Update” Approach

One approach, introduced by Jöreskog, is to start with a confirmatory model based on

theory, then update it by adding factor loadings with the aid of “modification indices.”

These indices attempt to estimate which missing paths, if added to the current model,

would result in the greatest reduction of the 2c fit statistic.

Obtaining modification indices from sem is straightforward.
> mod.indices(cfa1.fit)
5 largest modification indices, A matrix:
MAXPUSHU:Endurance X.2KROW:Strength MAXPUSHU:X.1500M MAXPUSHU:X.2KROW
 186.7412 170.2313 147.1726 132.1697
Endurance:MAXPUSHU
 128.8828

 5 largest modification indices, P matrix:
Endurance:MAXPUSHU Strength:X.2KROW BENCH:X.1500M Strength:X.1500M
 186.74117 170.23130 63.26395 59.28328
 Endurance:BENCH
 44.76791

Interpreting the above is facilitated by a knowledge of the RAM1 model of McArdle and

McDonald. However, essentially it works like this. An entry in the A matrix is of the

form, <endogenous variable>:<exogenous variable>. So, the largest

modification index, labeled MAXPUSHU:Endurance, indicates that the model 2c fit

index would be decreased by roughly 187 if a path from Endurance to MAXPUSHU were

added to the model. Let’s try it, by simply adding a single line to the previous model.

This line is “Endurance -> MAXPUSHU, theta19, NA”.

We fit the model,

> cfa2.model <- specify.model("CFA2.txt")
> cfa2.fit <- sem(cfa2.model, AthleticsData.R, 1000)

then examine the results.

> summary(cfa2.fit)
 Model Chisquare = 310.32 Df = 26 Pr(>Chisq) = 0
 Chisquare (null model) = 2330.1 Df = 36
 Goodness-of-fit index = 0.93856
 Adjusted goodness-of-fit index = 0.89367
 RMSEA index = 0.10463 90% CI: (0.094363, 0.11522)
 Bentler-Bonnett NFI = 0.86682
 Tucker-Lewis NNFI = 0.8284
 Bentler CFI = 0.87607
 SRMR = 0.093325
 BIC = 130.72

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -7.530 -0.323 0.444 0.910 2.410 7.520

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
theta01 0.73778 0.033684 21.9032 0.0000e+00 X.1500M <--- Endurance
theta02 0.56030 0.034651 16.1699 0.0000e+00 X.2KROW <--- Endurance
theta03 0.70195 0.033341 21.0540 0.0000e+00 X.12MINTR <--- Endurance
theta04 0.81307 0.036707 22.1502 0.0000e+00 BENCH <--- Strength
theta05 0.69295 0.035394 19.5781 0.0000e+00 CURL <--- Strength
theta06 0.52020 0.032383 16.0638 0.0000e+00 MAXPUSHU <--- Strength
theta07 0.59503 0.033551 17.7352 0.0000e+00 PINBALL <--- HandEye
theta08 0.75931 0.034697 21.8837 0.0000e+00 BILLIARD <--- HandEye
theta09 0.74385 0.034580 21.5112 0.0000e+00 GOLF <--- HandEye
theta10 0.45568 0.036057 12.6376 0.0000e+00 X.1500M <--> X.1500M
theta11 0.68607 0.037295 18.3959 0.0000e+00 X.2KROW <--> X.2KROW
theta12 0.50726 0.034922 14.5257 0.0000e+00 X.12MINTR <--> X.12MINTR
theta13 0.33892 0.044964 7.5376 4.7962e-14 BENCH <--> BENCH
theta14 0.51982 0.038556 13.4824 0.0000e+00 CURL <--> CURL
theta15 0.53297 0.033166 16.0700 0.0000e+00 MAXPUSHU <--> MAXPUSHU
theta16 0.64594 0.035543 18.1734 0.0000e+00 PINBALL <--> PINBALL
theta17 0.42345 0.038638 10.9594 0.0000e+00 BILLIARD <--> BILLIARD
theta18 0.44669 0.037998 11.7556 0.0000e+00 GOLF <--> GOLF
theta19 0.47879 0.031654 15.1260 0.0000e+00 MAXPUSHU <--- Endurance

 Iterations = 19

We see that the new parameter,
19
q , has an estimate value of .48, and is highly

significant. Moreover, the model 2c statistic decreased to 310, a 215 point decrease even

greater than the modification index predicted. According to statistical theory in Steiger,

Shapiro, and Browne (1984), since the models are nested (The first model is a special

case of the second, where one of the parameters is constrained to zero), you can treat

the difference in the two 2c values as a 2c with degrees of freedom equal to the

difference in their degrees of freedom (i. e., 1 in this case). The resulting chi square

difference statistic provides a method for testing whether there is a statistically different

improvement in fit. Clearly there is!

However, the RMSEA statistic for the improved model is still larger (.10) than the

recommended value. We recompute the modification indices:

> mod.indices(cfa2.fit)

 5 largest modification indices, A matrix:
X.2KROW:Strength X.2KROW:BENCH X.2KROW:CURL X.1500M:BENCH
 164.62477 137.49080 103.45883 89.50040
X.1500M:Strength
 84.81637

The largest modification index is for a path from Strength to X.2KROW. Adding this

path to the model with the line “Strength -> X.2KROW, theta20, NA” we refit

the model again,

> cfa3.model <- specify.model("CFA3.txt")
> cfa3.fit <- sem(cfa3.model, AthleticsData.R, 1000)
> summary(cfa3.fit)
Model Chisquare = 125.32 Df = 25 Pr(>Chisq) = 2.5535e-15
 Chisquare (null model) = 2330.1 Df = 36
 Goodness-of-fit index = 0.97393
 Adjusted goodness-of-fit index = 0.95307
 RMSEA index = 0.06338 90% CI: (0.052591, 0.074631)
 Bentler-Bonnett NFI = 0.94622
 Tucker-Lewis NNFI = 0.93703
 Bentler CFI = 0.95627
 SRMR = 0.080264
 BIC = -47.369

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.530000 -1.520000 0.000013 0.108000 1.350000 5.890000

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
theta01 0.77177 0.033156 23.2768 0 X.1500M <--- Endurance
theta02 0.60940 0.032238 18.9033 0 X.2KROW <--- Endurance
theta03 0.69222 0.032997 20.9786 0 X.12MINTR <--- Endurance
theta04 0.81218 0.033343 24.3581 0 BENCH <--- Strength
theta05 0.69416 0.033125 20.9555 0 CURL <--- Strength
theta06 0.56438 0.032014 17.6293 0 MAXPUSHU <--- Strength
theta07 0.59503 0.033551 17.7352 0 PINBALL <--- HandEye
theta08 0.75930 0.034697 21.8836 0 BILLIARD <--- HandEye
theta09 0.74385 0.034580 21.5113 0 GOLF <--- HandEye
theta10 0.40437 0.035668 11.3370 0 X.1500M <--> X.1500M
theta11 0.52207 0.031609 16.5165 0 X.2KROW <--> X.2KROW
theta12 0.52083 0.034224 15.2180 0 X.12MINTR <--> X.12MINTR
theta13 0.34037 0.037359 9.1107 0 BENCH <--> BENCH
theta14 0.51815 0.034470 15.0318 0 CURL <--> CURL
theta15 0.54321 0.031522 17.2329 0 MAXPUSHU <--> MAXPUSHU
theta16 0.64593 0.035543 18.1734 0 PINBALL <--> PINBALL
theta17 0.42346 0.038638 10.9597 0 BILLIARD <--> BILLIARD
theta18 0.44668 0.037998 11.7554 0 GOLF <--> GOLF
theta19 0.45936 0.031381 14.6382 0 MAXPUSHU <--- Endurance
theta20 0.42293 0.030938 13.6703 0 X.2KROW <--- Strength

 Iterations = 16

The new parameter,
20
q , has an impressive value of .42, and is highly significant. The

model 2c dropped to 125 (the chi square difference test is overwhelmingly significant)+,

and the RMSEA, at .063, is now definitely in the range considered acceptable by many

experts.

Of course, we can continue to examine modification indices, but we may be reaching a

point of diminishing returns where we are capitalizing on chance.

mod.indices(cfa3.fit)

 5 largest modification indices, A matrix:
Strength:X.1500M Endurance:BENCH X.1500M:BENCH X.1500M:Strength
 47.51062 40.07892 39.82350 34.17247
 BENCH:X.1500M
 33.91703

 5 largest modification indices, P matrix:
 Strength:X.1500M Strength:Endurance HandEye:Strength Endurance:BENCH
 34.17247 32.66084 26.38424 24.81201
 BENCH:X.1500M
 22.04953

Notice how all the modification indices are rather close, and are now much smaller than

before. Remember that the first variable in the A matrix is the variable the arrow goes

to, so we are looking only at paths from a latent variable to a manifest variable. Let’s

add a path from Strength to X.1500M and see what happens.

> cfa4.model <- specify.model("CFA4.txt")
> cfa4.fit <- sem(cfa4.model, AthleticsData.R, 1000)
> summary(cfa4.fit)

Model Chisquare = 81.641 Df = 24 Pr(>Chisq) = 3.3251e-08
 Chisquare (null model) = 2330.1 Df = 36
 Goodness-of-fit index = 0.983
 Adjusted goodness-of-fit index = 0.96812
 RMSEA index = 0.049032 90% CI: (0.037601, 0.060921)
 Bentler-Bonnett NFI = 0.96496
 Tucker-Lewis NNFI = 0.96231
 Bentler CFI = 0.97487
 SRMR = 0.061516
 BIC = -84.145

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.3500 -0.3240 0.0666 0.6760 1.3800 5.8900

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
theta01 0.76727 0.032380 23.6957 0.0000e+00 X.1500M <--- Endurance
theta02 0.61213 0.031840 19.2251 0.0000e+00 X.2KROW <--- Endurance
theta03 0.67383 0.032764 20.5664 0.0000e+00 X.12MINTR <--- Endurance
theta04 0.82465 0.032818 25.1282 0.0000e+00 BENCH <--- Strength
theta05 0.68468 0.032785 20.8841 0.0000e+00 CURL <--- Strength

theta06 0.50656 0.032462 15.6048 0.0000e+00 MAXPUSHU <--- Strength
theta07 0.59503 0.033551 17.7352 0.0000e+00 PINBALL <--- HandEye
theta08 0.75930 0.034697 21.8836 0.0000e+00 BILLIARD <--- HandEye
theta09 0.74385 0.034580 21.5113 0.0000e+00 GOLF <--- HandEye
theta10 0.35235 0.035665 9.8796 0.0000e+00 X.1500M <--> X.1500M
theta11 0.52539 0.031764 16.5406 0.0000e+00 X.2KROW <--> X.2KROW
theta12 0.54595 0.033784 16.1600 0.0000e+00 X.12MINTR <--> X.12MINTR
theta13 0.31995 0.036578 8.7470 0.0000e+00 BENCH <--> BENCH
theta14 0.53121 0.033818 15.7081 0.0000e+00 CURL <--> CURL
theta15 0.54467 0.031649 17.2100 0.0000e+00 MAXPUSHU <--> MAXPUSHU
theta16 0.64593 0.035543 18.1734 0.0000e+00 PINBALL <--> PINBALL
theta17 0.42346 0.038638 10.9596 0.0000e+00 BILLIARD <--> BILLIARD
theta18 0.44669 0.037998 11.7555 0.0000e+00 GOLF <--> GOLF
theta19 0.47520 0.030764 15.4466 0.0000e+00 MAXPUSHU <--- Endurance
theta20 0.35239 0.032025 11.0035 0.0000e+00 X.2KROW <--- Strength
theta21 -0.20340 0.030502 -6.6685 2.5845e-11 X.1500M <--- Strength

 Iterations = 18

We can see that the added parameter has a value of –.20, and the RMSEA has

decreased appreciably to .049, a value generally considered to represent excellent fit.

This latest coefficient seems to imply that increased strength actually hurts performance

in the 1500 meter run!

In practical circumstances, there is no way of determining which model is “correct.”

Indeed, one might argue that it is extremely unlikely that factor loadings (other than a

certain small number of loadings that can always be forced to zero by rotation, as we

will discuss later) are truly zero. On the other hand, “minor loadings” contribute little

to the ability of the factor model to fit data, and, because of sampling error, including

them in the model may be contributing nearly as much signal as noise.

In the above example, we started with a strong “confirmatory” position, based on a

prior understanding about the state of the world, i.e., there are 3 factors, and each

factor has 3 indicator variables. We used modification indices to “upgrade” the model,

and quickly ended up with a model that is parsimonious, seems to “make sense,” and

fits well.

Note that we can continue this process, by recomputing modification indices and

upgrading the model still further. Ultimately however, we have to worry seriously about

the extent to which we are capitalizing on chance.

3. The “ExploratoryConfirmatory” Approach

An alternative approach, which begins with a purely exploratory factor analysis, was

described by Karl Jöreskog in his 1978 Presidential Address to the Psychometric

Society.

Jöreskog’s approach is as follows:

 Perform an exploratory factor analysis, and decide on the number of factors, m.

In many textbook examples, the decision is relatively clear cut. Be forewarned —

in practice the decision may be quite difficult.

 Fit an m-factor model, and rotate to simple structure using varimax or promax.

(In the original article, Jöreskog said to use promax, but used varimax in his

numerical example. We’ll use varimax.)

 For each column of the factor pattern, find the largest loading, then constrain all

the other loadings in that row to be zero, and fit the resulting model as a

confirmatory factor model. This confirmatory model will have exactly the same

discrepancy function and 2c value as the exploratory factor analysis that

preceded it.

 Examine the factor pattern, and test all factor loadings. Delete “non-significant”

loadings from the model. After checking the fit, the user can decide whether to

terminate the process, or look for more loadings to delete.

A detailed commentary on the final steps may prove helpful. Due to the well-known fact

of rotational indeterminacy, the parameters in the exploratory factor model (where

every factor loading is free to vary) are not uniquely determined. In the broader

language of structural equation modeling, we say that the parameters are not

“identified.”

A parameter is a fixed numerical value. To estimate a “parameter,” it obviously follows

that the parameter has to be identified! So in general, a model must be identified in

some way before iteration to a best-fitting solution can be attempted. Therefore, a

model with parameters that are not identified can propose a severe problem for general

structural equation modeling programs like sem.

Exploratory factor analysis programs achieve identification automatically during

iteration by a variety of means, so while doing exploratory factor analysis with a

program designed to do exploratory factor analysis, you don’t need to worry about it.

However, when doing a “completely unrestricted” confirmatory factor analysis with 2 or

more factors, you cannot simply start by letting all the possible p m´ factor loadings be

free parameters. You’d discover that the solution is not identified. Depending on the

sophistication of your program, you’d either converge to a solution and get an error

indicator, or you’d fail to converge with a cryptic error message. sem, unfortunately,

falls into the latter category. Try fitting the following unrestricted 3 factor model in

sem.

Factor 1 -- Endurance
Endurance -> X.1500M, theta01, NA
Endurance -> X.2KROW, theta02, NA
Endurance -> X.12MINTR,theta03, NA
Endurance -> BENCH, theta04, NA
Endurance -> CURL, theta05, NA
Endurance -> MAXPUSHU, theta06, NA
Endurance -> PINBALL, theta07, NA
Endurance -> BILLIARD, theta08, NA
Endurance -> GOLF, theta09, NA
Factor 2 -- Strength
Strength -> X.1500M, theta10, NA
Strength -> X.2KROW, theta11, NA
Strength -> X.12MINTR,theta12, NA
Strength -> BENCH, theta13, NA
Strength -> CURL, theta14, NA
Strength -> MAXPUSHU, theta15, NA
Strength -> PINBALL, theta16, NA
Strength -> BILLIARD, theta17, NA
Strength -> GOLF, theta18, NA
Factor 3 -- Hand-Eye Coordination
Hand-Eye -> X.1500M, theta19, NA
Hand-Eye -> X.2KROW, theta20, NA
Hand-Eye -> X.12MINTR,theta21, NA
Hand-Eye -> BENCH, theta22, NA
Hand-Eye -> CURL, theta23, NA
Hand-Eye -> MAXPUSHU, theta24, NA
Hand-Eye -> PINBALL, theta25, NA
Hand-Eye -> BILLIARD, theta26, NA

Hand-Eye -> GOLF, theta27, NA
Unique Variances
X.1500M <-> X.1500M, theta28, NA
X.2KROW <-> X.2KROW, theta29, NA
X.12MINTR <-> X.12MINTR, theta30, NA
BENCH <-> BENCH, theta31, NA
CURL <-> CURL, theta32, NA
MAXPUSHU <-> MAXPUSHU, theta33, NA
PINBALL <-> PINBALL, theta34, NA
BILLIARD <-> BILLIARD, theta35, NA
GOLF <-> GOLF, theta36, NA
Factor Variances
Endurance <-> Endurance, NA, 1
Strength <-> Strength, NA, 1
Hand-Eye <-> Hand-Eye, NA, 1
Factor Correlations
Endurance <-> Strength, theta37, NA
Endurance <-> Hand-Eye, theta38, NA
Strength <-> Hand-Eye, theta39, NA

You’ll see the following error message:

Error in solve.default(C[ind, ind]) :
 Lapack routine dgesv: system is exactly singular

With the advantage of a substantial amount of experience, you might be able to

interpret this message as follows:

 During iteration, the program tries to invert a matrix that is a scalar multiple of

an estimated variance-covariance matrix of the parameter estimates.

 If some parameters are functionally related to others, this estimated asymptotic

covariance matrix will be singular

 The system is not “identified,” because some parameters are not needed — they

are determinate functions of other parameters

According to Jöreskog (1978), you can identify a common factor model by setting at

least 1k - loadings in each column of the factor pattern to zero. He provides a scheme

for doing this automatically, based on examination of the pattern after rotating to

simple structure. Jöreskog’s explanation of this step was somewhat terse, and he does

not describe in detail why the system works. In looking carefully at the algebra, we’ll

discover that some of the “free parameters” in a common factor pattern are not “really

free” as you might expect. In other words, if you set up a confirmatory factor model

with all p variables loading on all m factors, and all m factors allowed to correlate with

each other, you will have pm factor loadings and p unique variances, plus (1)/ 2m m -

nonredundant factor intercorrelations, yet the “true number of free parameters” is not

really (1) / 2pm p m m+ + - . Why not?

The answer stems from the following facts. First, suppose the orthogonal factor model

fits, and

 = +y Fx e

with F a p m´ factor pattern of full column rank, with the standard restrictions in

place. First of all, recall the fact of rotational indeterminacy, and assume the factors are

allowed to be correlated after rotation by a matrix T. Then if = +y Fx e , it must also

be true that -1= +y FTT x e for any nonsingular matrix T, so the common factor model

must still fit with new pattern * =F FT and new factors 1* -=x T x with covariance

matrix 1 1- - ¢T T . In general, we wish to retain the restriction that the common factors

have unit variance after rotation by 1-T . So we impose the restriction on 1-T that

1 1diag() diag()- - ¢ =T T I .

Now, suppose that we isolate an m m´ submatrix of F. Note that by suitable

permutation of the (arbitrary) ordering of the variables in y, we can always manipulate

this submatrix into the upper m rows of F. So we can write F in partitioned form as

 1

2

é ù
ê ú= ê ú
ê úë û

F
F

F

Suppose that
1

F is nonsingular, and let 1 1

1

- -=T F D , where D is a positive definite

diagonal scaling matrix. Then

1
1 1*

1 1
2 2 2 1

-

- -

é ùé ù é ù
ê úê ú ê ú= = = = ê úê ú ê ú
ê úê ú ê úë û ë û ë û

F FT D
F FT T

F FT F F D

Note that the upper m m´ submatrix of *F is diagonal, and contains
2 (1)m m m m- = - zeroes. In other words, it is inevitable that any factor pattern can

be rotated obliquely to include that many zeroes. Notice that rotation to this position

has absolutely no effect on how well the model fits. So instead of “really” having pm

free factor loadings, we have (1)pm m m- - loadings that are actually free to be

nonzero.

In the previous formula, we did not specify how to calculate the scaling matrix D.

However, it is determined by the restriction that the rotated factors still have unit

variance. This requirement means that 1 1diag() diag()- - ¢ =T T I . Since

1 1

1 1
diag() diag()- - ¢ ¢=T T DFF D , it is clear that we can force the latter matrix to have

ones on its diagonal by simply setting 1/2

1 1
diag ()- ¢=D FF , or, equivalently

 1 1

1 1

1 1/2

1 1
diag ()- -- ¢= =T F D F FF (1)

Since T operates on the rows of F independently, we do not need to rearrange the rows

of F to manipulate desired rows into the upper m m´ submatrix. Rather, we simply

construct
1

F from the desired rows and apply Equation 1.

A purely hypothetical example constructed using R should help make the above ideas

clear. Suppose we have a factor analysis based on 6 variables and two factors. We

observe the following factor pattern:

> F <- matrix(c(.6,.5,.58,.2,.1,.05,.09,.11,.07,.71,.62,.66),6,2)
> F
 [,1] [,2]
[1,] 0.60 0.09
[2,] 0.50 0.11
[3,] 0.58 0.07
[4,] 0.20 0.71
[5,] 0.10 0.62
[6,] 0.05 0.66

Notice that row 1 has the highest loading for factor 1, and row 4 has the highest loading

for factor 2. The preceding algebra says that we can actually rotate these two “marker”

rows (and the rest of F) so that the other two values in the “marker” rows are zero.

Pull out rows 1 and 4, and call them
1

F .

> F1 <- rbind(F[1,], F[4,])
> F1
 [,1] [,2]
[1,] 0.6 0.09
[2,] 0.2 0.71

Then construct T via Equation 1 as

> T <- solve(F1) %*% diag (sqrt(diag(F1 %*% t(F1))))

We can readily verify that the resulting T rotates F into the desired configuration, and

that 1 1diag() diag()- - ¢ =T T I :

> zapsmall(F %*% T) ## use zapsmall to eliminate scientific notation
 [,1] [,2]
[1,] 0.6067125 0.0000000
[2,] 0.4951844 0.0379663
[3,] 0.5915446 -0.0184408
[4,] 0.0000000 0.7376313
[5,] -0.0788131 0.6562749
[6,] -0.1434994 0.7078007

> solve(T) %*% t (solve(T))
 [,1] [,2]
[1,] 1.0000000 0.4109221
[2,] 0.4109221 1.0000000

This rotated version of the original F will exactly match the F we get if we fit a

confirmatory factor model with correlated factors and fixed zeroes in the appropriate

positions. Let’s try this with the AthleticsData example. We pull the factor loadings out

of the results, place them in a matrix, and add the variable names to help us keep track

> exploratory <- factanal(AthleticsData, factors = 3)
> F <- matrix(exploratory$loadings[1:27],9,3)
> rownames(F) <- colnames(AthleticsData)
> F
 [,1] [,2] [,3]
PINBALL -0.005893274 0.13056931 0.58976923
BILLIARD 0.023633952 0.03187533 0.76469736
GOLF 0.048166786 0.05164699 0.73454363
X.1500M 0.778911631 -0.17862424 0.01582561
X.2KROW 0.584828226 0.37187300 0.01224432
X.12MINTR 0.677605546 -0.03963524 0.03780637
BENCH -0.118897796 0.81551057 0.13732357
CURL -0.022681822 0.67410438 0.09591605
MAXPUSHU 0.432998769 0.52198807 0.02011158

The highest loading in the first column is in row 4, the highest loading in the second

column is in row 7, and the highest loading in the third column is in row 2. We extract

these three rows, bind them into the matrix
1

F , and then construct T as before.
> F1 <- rbind(F[4,], F[7,],F[2,])
> F1
 [,1] [,2] [,3]
[1,] 0.77891163 -0.17862424 0.01582561
[2,] -0.11889780 0.81551057 0.13732357
[3,] 0.02363395 0.03187533 0.76469736
> T <- solve(F1) %*% diag (sqrt(diag(F1 %*% t(F1))))
> rotated.F <- zapsmall (F %*% T)
> rotated.F
 [,1] [,2] [,3]
PINBALL -0.0085167 0.1073794 0.5730588
BILLIARD 0.0000000 0.0000000 0.7657262
GOLF 0.0304990 0.0287544 0.7301948
X.1500M 0.7992874 0.0000000 0.0000000
X.2KROW 0.6819869 0.5409817 -0.0902969
X.12MINTR 0.7131092 0.1225123 0.0035555
BENCH 0.0000000 0.8354950 0.0000000
CURL 0.0811407 0.7101584 -0.0224437
MAXPUSHU 0.5444078 0.6636849 -0.0998862

The rotation worked, and the new rotated factors have the following correlation matrix:

> solve(T) %*% t(solve(T))
 [,1] [,2] [,3]
[1,] 1.00000000 -0.3535600 0.04054807
[2,] -0.35355999 1.0000000 0.20038064
[3,] 0.04054807 0.2003806 1.00000000

Let’s verify that we get exactly the same solution if we set up a confirmatory factor

model with all loadings free except for the zeroes we rotated into position in rows 2,4

and 7. It’ll help if we add column names to the factor pattern:

> colnames(rotated.F) <- c("Endurance","Strength","Hand-Eye")
> rotated.F
 Endurance Strength Hand-Eye
PINBALL -0.0085167 0.1073794 0.5730588
BILLIARD 0.0000000 0.0000000 0.7657262
GOLF 0.0304990 0.0287544 0.7301948
X.1500M 0.7992874 0.0000000 0.0000000
X.2KROW 0.6819869 0.5409817 -0.0902969
X.12MINTR 0.7131092 0.1225123 0.0035555
BENCH 0.0000000 0.8354950 0.0000000
CURL 0.0811407 0.7101584 -0.0224437
MAXPUSHU 0.5444078 0.6636849 -0.0998862

The easiest way to construct the initial confirmatory factor model is to take a complete

model with all loadings, then simply eliminate the zero loadings by erasing their lines

from the model file, or by commenting them out with ## as shown below. There is no

need to “renumber” the names given to the parameter numbers.

Factor 1 -- Endurance
Endurance -> X.1500M, theta01, NA
Endurance -> X.2KROW, theta02, NA
Endurance -> X.12MINTR,theta03, NA
Endurance -> BENCH,theta04, NA
Endurance -> CURL, theta05, NA
Endurance -> MAXPUSHU, theta06, NA
Endurance -> PINBALL, theta07, NA
Endurance -> BILLIARD, theta08, NA
Endurance -> GOLF, theta09, NA
Factor 2 -- Strength
Strength -> X.1500M, theta10, NA
Strength -> X.2KROW, theta11, NA
Strength -> X.12MINTR,theta12, NA
Strength -> BENCH, theta13, NA
Strength -> CURL, theta14, NA
Strength -> MAXPUSHU, theta15, NA
Strength -> PINBALL, theta16, NA
Strength -> BILLIARD, theta17, NA
Strength -> GOLF, theta18, NA
Factor 3 -- Hand-Eye Coordination
Hand-Eye -> X.1500M, theta19, NA
Hand-Eye -> X.2KROW, theta20, NA
Hand-Eye -> X.12MINTR,theta21, NA
Hand-Eye -> BENCH, theta22, NA
Hand-Eye -> CURL, theta23, NA
Hand-Eye -> MAXPUSHU, theta24, NA
Hand-Eye -> PINBALL, theta25, NA
Hand-Eye -> BILLIARD, theta26, NA
Hand-Eye -> GOLF, theta27, NA
Unique Variances
X.1500M <-> X.1500M, theta28, NA
X.2KROW <-> X.2KROW, theta29, NA
X.12MINTR <-> X.12MINTR, theta30, NA
BENCH <-> BENCH, theta31, NA
CURL <-> CURL, theta32, NA
MAXPUSHU <-> MAXPUSHU, theta33, NA
PINBALL <-> PINBALL, theta34, NA
BILLIARD <-> BILLIARD, theta35, NA
GOLF <-> GOLF, theta36, NA
Factor Variances
Endurance <-> Endurance, NA, 1
Strength <-> Strength, NA, 1
Hand-Eye <-> Hand-Eye, NA, 1
Factor Correlations
Endurance <-> Strength, theta37, NA
Endurance <-> Hand-Eye, theta38, NA
Strength <-> Hand-Eye, theta39, NA

We save this model definition to a file called “Full AthleticsData Model.txt” and fit it

with the following commands:

> base.model <- specify.model("Full AthleticsData Model.txt")
Read 36 records
> base.model.fit <- sem(base.model, AthleticsData.R, 1000)
> summary(base.model.fit)

 Model Chisquare = 13.016 Df = 12 Pr(>Chisq) = 0.36787
 Chisquare (null model) = 2330.1 Df = 36
 Goodness-of-fit index = 0.99718

 Adjusted goodness-of-fit index = 0.98943
 RMSEA index = 0.0092067 90% CI: (NA, 0.034233)
 Bentler-Bonnett NFI = 0.99441
 Tucker-Lewis NNFI = 0.99867
 Bentler CFI = 0.99956
 SRMR = 0.0083836
 BIC = -69.877

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.28e-01 -6.03e-02 3.58e-06 2.03e-03 5.30e-02 6.75e-01

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
theta01 0.7992863 0.032454 24.62791 0.0000e+00 X.1500M <--- Endurance
theta02 0.6819851 0.037465 18.20328 0.0000e+00 X.2KROW <--- Endurance
theta03 0.7131082 0.035756 19.94376 0.0000e+00 X.12MINTR <--- Endurance
theta05 0.0811397 0.033591 2.41551 1.5713e-02 CURL <--- Endurance
theta06 0.5444060 0.036702 14.83334 0.0000e+00 MAXPUSHU <--- Endurance
theta07 -0.0085169 0.036086 -0.23601 8.1342e-01 PINBALL <--- Endurance
theta09 0.0304986 0.035300 0.86399 3.8759e-01 GOLF <--- Endurance
theta11 0.5409809 0.038606 14.01292 0.0000e+00 X.2KROW <--- Strength
theta12 0.1225113 0.035842 3.41809 6.3062e-04 X.12MINTR <--- Strength
theta13 0.8354945 0.032119 26.01248 0.0000e+00 BENCH <--- Strength
theta14 0.7101566 0.036427 19.49523 0.0000e+00 CURL <--- Strength
theta15 0.6636826 0.038615 17.18738 0.0000e+00 MAXPUSHU <--- Strength
theta16 0.1073757 0.036889 2.91075 3.6057e-03 PINBALL <--- Strength
theta18 0.0287492 0.036641 0.78461 4.3268e-01 GOLF <--- Strength
theta20 -0.0902962 0.036492 -2.47439 1.3346e-02 X.2KROW <--- HandEye
theta21 0.0035565 0.034536 0.10298 9.1798e-01 X.12MINTR <--- HandEye
theta23 -0.0224436 0.033400 -0.67197 5.0160e-01 CURL <--- HandEye
theta24 -0.0998858 0.036133 -2.76440 5.7027e-03 MAXPUSHU <--- HandEye
theta25 0.5730593 0.034658 16.53460 0.0000e+00 PINBALL <--- HandEye
theta26 0.7657239 0.034999 21.87871 0.0000e+00 BILLIARD <--- HandEye
theta27 0.7301998 0.036511 19.99932 0.0000e+00 GOLF <--- HandEye
theta28 0.3611397 0.034815 10.37297 0.0000e+00 X.1500M <--> X.1500M
theta29 0.5195373 0.031951 16.26021 0.0000e+00 X.2KROW <--> X.2KROW
theta30 0.5378512 0.033371 16.11730 0.0000e+00 X.12MINTR <--> X.12MINTR
theta31 0.3019493 0.035269 8.56143 0.0000e+00 BENCH <--> BENCH
theta32 0.5358710 0.033143 16.16860 0.0000e+00 CURL <--> CURL
theta33 0.5396369 0.031860 16.93766 0.0000e+00 MAXPUSHU <--> MAXPUSHU
theta34 0.6350901 0.034811 18.24382 0.0000e+00 PINBALL <--> PINBALL
theta35 0.4136680 0.039453 10.48518 0.0000e+00 BILLIARD <--> BILLIARD
theta36 0.4554507 0.037795 12.05056 0.0000e+00 GOLF <--> GOLF
theta37 -0.3535592 0.042714 -8.27737 2.2204e-16 Strength <--> Endurance
theta38 0.0405418 0.050557 0.80190 4.2261e-01 HandEye <--> Endurance
theta39 0.2003873 0.047973 4.17704 2.9532e-05 HandEye <--> Strength

 Iterations = 88

As you can see, the above output precisely matches our rotated simple structure

solution, except now we have standard error estimates and test statistics associated with

all the parameters. The hypothesis of perfect fit is no longer even rejected (p = .37), and

the fit indices are better than one usually sees in practice.

One aspect of the above output might confuse the novice, so let me digress for a

moment. I stated that this “identified” unrestricted model has exactly the same fit as an

unrestricted model fit by a “dedicated” factor analysis program such as factanal.

However, in this case, we see a chi square statistic of 13.016, while in our previous

investigation using factanal gave a chi square of 12.94. Why the discrepancy?

The answer is that the chi square statistic is, in general, computed by multiplying the

maximum likelihood discrepancy function by a “multiplier.” Most general purpose

structural equation modeling programs use a multiplier of 1N - , while many dedicated

factor analysis programs use the “Bartlett multiplier”

4 5

1
3 6

p m
N

+
- - -

 If you examine the factanal output with the command

> exploratory$criteria
 objective counts.function counts.gradient
 0.01302917 11.00000000 11.00000000

you discover that the discrepancy function is .01302917. The Bartlett multiplier is

992.1667, which when multipled by the discrepancy function gives the stated chi square

value of 12.94. If we multiply the discrepancy by 1N - , we obtain 13.016, the value

given by sem. We can also examine the discrepancy function directly, with the

command

> base.model.fit$criterion
[1] 0.01302917

The next step, according to Jöreskog (1978), is to pare down the model by eliminating

factor loadings that are not significant, and then re-estimating the model. If we

eliminate all paths that are not significant with p < .05, two-tailed, this amounts to

eliminating all paths with z-statistics less than 1.96 in absolute value. I highlighted all

the loading (directed) paths in the output above. Effectively eliminating them by

placing ## in front of them, and fitting the revised model, we get

 Model Chisquare = 14.824 Df = 17 Pr(>Chisq) = 0.60814
 Chisquare (null model) = 2330.1 Df = 36
 Goodness-of-fit index = 0.99678
 Adjusted goodness-of-fit index = 0.99147
 RMSEA index = 0 90% CI: (NA, 0.024988)
 Bentler-Bonnett NFI = 0.99364
 Tucker-Lewis NNFI = 1.002
 Bentler CFI = 1

 SRMR = 0.010374
 BIC = -102.61

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.48e-01 -1.48e-01 -9.49e-06 -1.56e-02 6.34e-02 1.12e+00

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
theta01 0.798679 0.032453 24.6106 0.0000e+00 X.1500M <--- Endurance
theta02 0.682514 0.037419 18.2398 0.0000e+00 X.2KROW <--- Endurance
theta03 0.714667 0.035439 20.1663 0.0000e+00 X.12MINTR <--- Endurance
theta05 0.079109 0.033130 2.3878 1.6949e-02 CURL <--- Endurance
theta06 0.545619 0.036620 14.8994 0.0000e+00 MAXPUSHU <--- Endurance
theta11 0.540617 0.038419 14.0717 0.0000e+00 X.2KROW <--- Strength
theta12 0.123926 0.034505 3.5915 3.2875e-04 X.12MINTR <--- Strength
theta13 0.837604 0.032037 26.1446 0.0000e+00 BENCH <--- Strength
theta14 0.703326 0.034641 20.3035 0.0000e+00 CURL <--- Strength
theta15 0.663589 0.038425 17.2695 0.0000e+00 MAXPUSHU <--- Strength
theta16 0.103959 0.031970 3.2517 1.1471e-03 PINBALL <--- Strength
theta20 -0.085985 0.033327 -2.5801 9.8785e-03 X.2KROW <--- HandEye
theta24 -0.094708 0.033368 -2.8382 4.5363e-03 MAXPUSHU <--- HandEye
theta25 0.574036 0.034090 16.8387 0.0000e+00 PINBALL <--- HandEye
theta26 0.762281 0.034516 22.0849 0.0000e+00 BILLIARD <--- HandEye
theta27 0.740866 0.034353 21.5664 0.0000e+00 GOLF <--- HandEye
theta28 0.362112 0.034793 10.4077 0.0000e+00 X.1500M <--> X.1500M
theta29 0.520594 0.031931 16.3039 0.0000e+00 X.2KROW <--> X.2KROW
theta30 0.536656 0.033361 16.0861 0.0000e+00 X.12MINTR <--> X.12MINTR
theta31 0.298420 0.035146 8.4910 0.0000e+00 BENCH <--> BENCH
theta32 0.538503 0.032873 16.3815 0.0000e+00 CURL <--> CURL
theta33 0.540087 0.031881 16.9410 0.0000e+00 MAXPUSHU <--> MAXPUSHU
theta34 0.635539 0.034737 18.2958 0.0000e+00 PINBALL <--> PINBALL
theta35 0.418927 0.038344 10.9256 0.0000e+00 BILLIARD <--> BILLIARD
theta36 0.451118 0.037473 12.0386 0.0000e+00 GOLF <--> GOLF
theta37 -0.354331 0.042603 -8.3170 0.0000e+00 Strength <--> Endurance
theta38 0.049396 0.042759 1.1552 2.4800e-01 HandEye <--> Endurance
theta39 0.202231 0.041354 4.8902 1.0071e-06 HandEye <--> Strength

 Iterations = 23

A final step, according to Jöreskog, is to check modification indices to see if any zero

loadings might be relaxed.

> mod.indices(pared.model.fit)

The results show that no potential loading from a factor to an observed variable makes

the list of highest modification indices in the A matrix, and only one of them suggests a

significant improvement in the chi square statistic, because the significance value for a
2c with one degree of freedom is 3.84.

 5 largest modification indices, A matrix:
 GOLF:X.2KROW BILLIARD:X.2KROW X.2KROW:GOLF CURL:GOLF X.1500M:MAXPUSHU
 3.933301 2.005178 1.417790 1.128748 0.968813

 5 largest modification indices, P matrix:
 X.2KROW:GOLF X.12MINTR:GOLF X.2KROW:BILLIARD MAXPUSHU:X.1500M MAXPUSHU:X.12MINTR
 4.427690 2.845399 2.576033 2.101112 2.016665

This final model has fit statistics that are incredibly good. The point estimate for the

RMSEA is zero, and the p-value for the test of perfect fit is .61. The hypothesis of

perfect fit cannot be rejected.

Before ending this discussion, I’d like to sound some cautionary notes, and add some

food for thought. First and foremost, the statistics generated by sem and several other

programs like it assume that (a) a sample covariance matrix with (b) a Wishart

distribution is being analyzed. The distribution theory, overall test of fit, and standard

error estimates are all based on that assumption. Assumption (a) is clearly violated in

this situation, as, true to tradition, we actually analyzed the correlation matrix. Now, in

a sense, a correlation matrix is a covariance matrix, but the sample correlation matrix

does not have the same distribution as the sample covariance matrix from which it is

calculated. To see why, simply look at each element of the correlation matrix. The

diagonal entries do not vary randomly — they are always 1 — while the elements on

the diagonal of a sample covariance matrix are, of course, free to vary. Lawley and

Maxwell (1970) pointed this out in their book on factor analysis, and showed the extent

of the error in the standard error estimates that could result from analyzing the sample

correlation matrix as though it were a correlation matrix. The earliest commercial

software program, LISREL, was based on a computational engine that assumed a

covariance matrix was being analyzed. For years, LISREL produced incorrect standard

error estimates from a sample correlation matrix, and, in fact, featured examples of the

same in its manual. The chi square statistic and parameter estimates are not affected by

this error when a factor model is estimated, but the standard errors can be substantially

in error.

In practice, assumption (b), which amounts in practice to an assumption of multivariate

normality, is also violated frequently. Although “asymptotically distribution free”

(ADF) methods are available to compensate for this, they don’t work very well unless

sample sizes are quite large.

If you think carefully about what we did in our two approaches to confirmatory factor

analysis, you will realize that a number of aspects were questionable, because the

procedures violated some long established principles of statistical analysis. In addition to

some truly questionable aspects of the procedures, other things we did were somewhat

arbitrary. For example, we decided to stop freeing up factor loadings in our first

approach, when the modification indices showed we could continue to produce

significant improvements in the overall fit statistic. In the second procedure, we used

the .05 significance level to establish our cutoff for deciding if a loading is

“insignificant.” What would have happened if we’d considered familywise error rate?

These are issues we will discuss in class.

